ireland-news-headlines/roberta_year_as_text_better_finetunning_100k/04_predict.py

29 lines
1.0 KiB
Python
Raw Normal View History

import pickle
from config import LABELS_LIST, MODEL
from transformers import AutoTokenizer
from tqdm import tqdm
device = 'cuda'
model_path= './roberta-ireland'
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(model_path).cuda()
tokenizer = AutoTokenizer.from_pretrained(MODEL)
for dataset in ('dev-0', 'test-A', 'test-B'):
with open(f'../{dataset}/huggingface_format_year_as_text.csv') as f_in, open(f'../{dataset}/out.tsv','w') as f_out:
first_line = True
for line_in in tqdm(f_in, total=150_000):
if first_line:
first_line = False
continue
text = line_in.split('\t')[0]
text = text.rstrip('\n')
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt").to(device)
outputs = model(**inputs)
probs = outputs[0].softmax(1)
prediction = LABELS_LIST[probs.argmax(1)]
f_out.write(prediction + '\n')