86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
|
import pickle
|
||
|
from config import LABELS_LIST, MODEL
|
||
|
|
||
|
with open('train_dataset.pickle','rb') as f_p:
|
||
|
train_dataset = pickle.load(f_p)
|
||
|
|
||
|
with open('eval_dataset_small.pickle','rb') as f_p:
|
||
|
eval_dataset_small = pickle.load(f_p)
|
||
|
|
||
|
with open('eval_dataset_full.pickle','rb') as f_p:
|
||
|
eval_dataset_full = pickle.load(f_p)
|
||
|
|
||
|
with open('test_dataset.pickle','rb') as f_p:
|
||
|
test_dataset = pickle.load(f_p)
|
||
|
|
||
|
|
||
|
from transformers import AutoModelForSequenceClassification
|
||
|
|
||
|
model = AutoModelForSequenceClassification.from_pretrained('roberta-retrained/')
|
||
|
|
||
|
from transformers import TrainingArguments
|
||
|
|
||
|
|
||
|
training_args = TrainingArguments("test_trainer",
|
||
|
per_device_train_batch_size=4,
|
||
|
per_device_eval_batch_size=4,
|
||
|
evaluation_strategy='steps',
|
||
|
#eval_steps=2_000,
|
||
|
#save_steps=2_000,
|
||
|
eval_steps=2_000,
|
||
|
save_steps=20_000,
|
||
|
num_train_epochs=1,
|
||
|
gradient_accumulation_steps=2,
|
||
|
learning_rate = 1e-6,
|
||
|
#warmup_steps=4_000,
|
||
|
warmup_steps=4,
|
||
|
load_best_model_at_end=True,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
from datasets import load_metric
|
||
|
|
||
|
metric = load_metric("accuracy")
|
||
|
|
||
|
def compute_metrics(eval_pred):
|
||
|
logits, labels = eval_pred
|
||
|
predictions = np.argmax(logits, axis=-1)
|
||
|
return metric.compute(predictions=predictions, references=labels)
|
||
|
|
||
|
|
||
|
from transformers import Trainer
|
||
|
|
||
|
trainer = Trainer(
|
||
|
model=model,
|
||
|
args=training_args,
|
||
|
train_dataset=train_dataset,
|
||
|
eval_dataset=eval_dataset_small,
|
||
|
compute_metrics=compute_metrics,
|
||
|
)
|
||
|
|
||
|
|
||
|
eval_predictions = trainer.predict(eval_dataset_full).predictions.argmax(1)
|
||
|
|
||
|
with open('../dev-0/out.tsv', 'w') as f_out:
|
||
|
for pred in eval_predictions:
|
||
|
f_out.write(LABELS_LIST[pred] + '\n')
|
||
|
|
||
|
test_predictions = trainer.predict(test_dataset).predictions.argmax(1)
|
||
|
with open('../test-A/out.tsv', 'w') as f_out:
|
||
|
for pred in test_predictions:
|
||
|
f_out.write(LABELS_LIST[pred] + '\n')
|
||
|
|
||
|
#model = AutoModelForSequenceClassification.from_pretrained('roberta-retrained/')
|
||
|
|
||
|
#for dataset in ('dev-0', 'test-A'):
|
||
|
# with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/out.tsv','w') as f_out:
|
||
|
# for line_in in tqdm(f_in, total=150_000):
|
||
|
# _,_, text = line_in.split('\t')
|
||
|
# text = text.rstrip('\n')
|
||
|
# inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt").to(device)
|
||
|
# outputs = model(**inputs)
|
||
|
# probs = outputs[0].softmax(1)
|
||
|
# prediction = LABELS_LIST[probs.argmax(1)]
|
||
|
# f_out.write(prediction + '\n')
|
||
|
#
|