roberta_year_as_token_finetunned
This commit is contained in:
parent
089e7eb548
commit
c67ac8c415
34
roberta_year_as_token_finetunned/01_create_datasets.py
Normal file
34
roberta_year_as_token_finetunned/01_create_datasets.py
Normal file
@ -0,0 +1,34 @@
|
||||
import datetime
|
||||
from config import LABELS_DICT
|
||||
|
||||
with open('../test-A/in.tsv','r') as f_in, open(f'../test-A/huggingface_format_year.csv', 'w') as f_hf:
|
||||
f_hf.write('text\tyear_cont\tdate\tday_of_year\tday_of_month\tmonth\tyear\tweekday\tlabel\n')
|
||||
for line_in in f_in:
|
||||
year_cont, date, text = line_in.rstrip('\n').split('\t')
|
||||
d = datetime.datetime.strptime(date,"%Y%m%d")
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
day_of_month = str(d.day)
|
||||
month = str(d.month)
|
||||
year = str(d.year)
|
||||
weekday = str(d.weekday())
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
text = ' '.join(['<unk>' *4]) + ' ' + text
|
||||
f_hf.write(text +'\t' +year_cont +'\t'+ date + '\t' + day_of_year + '\t' + day_of_month + '\t' + month + '\t' + year + '\t' + weekday + '\t' + str('0') + '\n')
|
||||
|
||||
|
||||
for dataset in 'train', 'dev-0':
|
||||
with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/expected.tsv') as f_exp, open(f'../{dataset}/huggingface_format_year.csv','w') as f_hf:
|
||||
f_hf.write('text\tyear_cont\tdate\tday_of_year\tday_of_month\tmonth\tyear\tweekday\tlabel\n')
|
||||
for line_in, line_exp in zip(f_in, f_exp):
|
||||
label = str(LABELS_DICT[line_exp.rstrip('\n')])
|
||||
year_cont,date,text = line_in.rstrip('\n').split('\t')
|
||||
d = datetime.datetime.strptime(date,"%Y%m%d")
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
day_of_month = str(d.day)
|
||||
month = str(d.month)
|
||||
year = str(d.year)
|
||||
weekday = str(d.weekday())
|
||||
day_of_year = str(d.timetuple().tm_yday)
|
||||
text = ' '.join(['<unk>' *4]) + ' ' + text
|
||||
f_hf.write(text +'\t' +year_cont +'\t'+ date + '\t'+ day_of_year + '\t' + day_of_month + '\t' + month + '\t' + year + '\t' + weekday + '\t' + label + '\n')
|
||||
|
56
roberta_year_as_token_finetunned/02_load_dataset.py
Normal file
56
roberta_year_as_token_finetunned/02_load_dataset.py
Normal file
@ -0,0 +1,56 @@
|
||||
import pickle
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
from config import MODEL
|
||||
from tqdm import tqdm
|
||||
|
||||
dataset = load_dataset('csv', sep='\t', data_files={'train': ['../train/huggingface_format_year.csv'], 'test': ['../dev-0/huggingface_format_year.csv']})
|
||||
test_dataset = load_dataset('csv', sep='\t', data_files='../test-A/huggingface_format_year.csv')
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||
|
||||
def tokenize_function(examples):
|
||||
t = tokenizer(examples["text"], padding="max_length", truncation=True)
|
||||
examples['year'] = [x - 1995 for x in examples['year']]
|
||||
for column in 'date', 'day_of_month', 'day_of_year', 'month', 'year', 'weekday', 'year_cont':
|
||||
#t[column] = [[a] * b.index(1) + [0] *(len(b) - b.index(1)) for a,b in zip(examples[column], t['input_ids'])]
|
||||
t[column] = [[0] * len(i) for i in t.input_ids]
|
||||
for i in range(len(t['input_ids'])):
|
||||
t['year'][i][1] = examples['year'][i]
|
||||
t['month'][i][2] = examples['month'][i]
|
||||
t['day_of_month'][i][3] = examples['day_of_month'][i]
|
||||
t['weekday'][i][4] = examples['weekday'][i]
|
||||
return t
|
||||
|
||||
test_tokenized_datasets = test_dataset.map(tokenize_function, batched=True)
|
||||
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
|
||||
#for d in ('train', 'test'):
|
||||
# for i in tqdm(range(len(tokenized_datasets[d]))):
|
||||
# tokenized_datasets[d][i][column] = [tokenized_datasets[d][i][column] ] * 512 #len(tokenized_datasets[d][i]['input_ids'])
|
||||
#
|
||||
#d = 'train'
|
||||
#for column in tqdm(('date', 'day_of_month', 'day_of_year', 'month', 'year', 'year_cont')):
|
||||
# for i in tqdm(range(len(test_tokenized_datasets[d]))):
|
||||
# test_tokenized_datasets[d][i][column] = [test_tokenized_datasets[d][i][column] ] * 512 #len(test_tokenized_datasets[d][i]['input_ids'])
|
||||
|
||||
train_dataset = tokenized_datasets["train"].shuffle(seed=42)
|
||||
eval_dataset_full = tokenized_datasets["test"]
|
||||
eval_dataset_small = tokenized_datasets["test"].select(range(2000))
|
||||
test_dataset = test_tokenized_datasets["train"]
|
||||
|
||||
|
||||
with open('train_dataset.pickle','wb') as f_p:
|
||||
pickle.dump(train_dataset, f_p)
|
||||
|
||||
with open('eval_dataset_small.pickle','wb') as f_p:
|
||||
pickle.dump(eval_dataset_small, f_p)
|
||||
|
||||
with open('eval_dataset_full.pickle','wb') as f_p:
|
||||
pickle.dump(eval_dataset_full, f_p)
|
||||
|
||||
with open('test_dataset.pickle','wb') as f_p:
|
||||
pickle.dump(test_dataset, f_p)
|
||||
|
||||
|
78
roberta_year_as_token_finetunned/03_train.py
Normal file
78
roberta_year_as_token_finetunned/03_train.py
Normal file
@ -0,0 +1,78 @@
|
||||
import pickle
|
||||
from config import LABELS_LIST, MODEL
|
||||
|
||||
with open('train_dataset.pickle','rb') as f_p:
|
||||
train_dataset = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_small.pickle','rb') as f_p:
|
||||
eval_dataset_small = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||
eval_dataset_full = pickle.load(f_p)
|
||||
|
||||
with open('test_dataset.pickle','rb') as f_p:
|
||||
test_dataset = pickle.load(f_p)
|
||||
|
||||
|
||||
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaConfig
|
||||
|
||||
#model = RobertaForSequenceClassification(RobertaConfig(num_labels=7))
|
||||
model = RobertaForSequenceClassification.from_pretrained('roberta-base',num_labels=7)
|
||||
#model = RobertaForSequenceClassification(model.config)
|
||||
|
||||
from transformers import TrainingArguments
|
||||
|
||||
|
||||
training_args = TrainingArguments("test_trainer",
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
evaluation_strategy='steps',
|
||||
#eval_steps=2_000,
|
||||
#save_steps=2_000,
|
||||
eval_steps=20_000,
|
||||
save_steps=20_000,
|
||||
num_train_epochs=20,
|
||||
gradient_accumulation_steps=2,
|
||||
learning_rate = 1e-6,
|
||||
#warmup_steps=4_000,
|
||||
warmup_steps=4,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_metric
|
||||
|
||||
metric = load_metric("accuracy")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
logits, labels = eval_pred
|
||||
predictions = np.argmax(logits, axis=-1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset_small,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
#trainer.train(resume_from_checkpoint=True)
|
||||
trainer.train()
|
||||
trainer.save_model("./roberta-retrained")
|
||||
trainer.evaluate()
|
||||
|
||||
|
||||
eval_predictions = trainer.predict(eval_dataset_full).predictions.argmax(1)
|
||||
|
||||
with open('../dev-0/out.tsv', 'w') as f_out:
|
||||
for pred in eval_predictions:
|
||||
f_out.write(LABELS_LIST[pred] + '\n')
|
||||
|
||||
test_predictions = trainer.predict(test_dataset).predictions.argmax(1)
|
||||
with open('../test-A/out.tsv', 'w') as f_out:
|
||||
for pred in test_predictions:
|
||||
f_out.write(LABELS_LIST[pred] + '\n')
|
85
roberta_year_as_token_finetunned/04_predict.py
Normal file
85
roberta_year_as_token_finetunned/04_predict.py
Normal file
@ -0,0 +1,85 @@
|
||||
import pickle
|
||||
from config import LABELS_LIST, MODEL
|
||||
|
||||
with open('train_dataset.pickle','rb') as f_p:
|
||||
train_dataset = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_small.pickle','rb') as f_p:
|
||||
eval_dataset_small = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||
eval_dataset_full = pickle.load(f_p)
|
||||
|
||||
with open('test_dataset.pickle','rb') as f_p:
|
||||
test_dataset = pickle.load(f_p)
|
||||
|
||||
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained('test_trainer/checkpoint-620000').cuda()
|
||||
|
||||
from transformers import TrainingArguments
|
||||
|
||||
|
||||
training_args = TrainingArguments("test_trainer",
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
evaluation_strategy='steps',
|
||||
#eval_steps=2_000,
|
||||
#save_steps=2_000,
|
||||
eval_steps=2_000,
|
||||
save_steps=20_000,
|
||||
num_train_epochs=1,
|
||||
gradient_accumulation_steps=2,
|
||||
learning_rate = 1e-6,
|
||||
#warmup_steps=4_000,
|
||||
warmup_steps=4,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_metric
|
||||
|
||||
metric = load_metric("accuracy")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
logits, labels = eval_pred
|
||||
predictions = np.argmax(logits, axis=-1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset_small,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
|
||||
eval_predictions = trainer.predict(eval_dataset_full).predictions.argmax(1)
|
||||
|
||||
with open('../dev-0/out.tsv', 'w') as f_out:
|
||||
for pred in eval_predictions:
|
||||
f_out.write(LABELS_LIST[pred] + '\n')
|
||||
|
||||
test_predictions = trainer.predict(test_dataset).predictions.argmax(1)
|
||||
with open('../test-A/out.tsv', 'w') as f_out:
|
||||
for pred in test_predictions:
|
||||
f_out.write(LABELS_LIST[pred] + '\n')
|
||||
|
||||
#model = AutoModelForSequenceClassification.from_pretrained('roberta-retrained/')
|
||||
|
||||
#for dataset in ('dev-0', 'test-A'):
|
||||
# with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/out.tsv','w') as f_out:
|
||||
# for line_in in tqdm(f_in, total=150_000):
|
||||
# _,_, text = line_in.split('\t')
|
||||
# text = text.rstrip('\n')
|
||||
# inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt").to(device)
|
||||
# outputs = model(**inputs)
|
||||
# probs = outputs[0].softmax(1)
|
||||
# prediction = LABELS_LIST[probs.argmax(1)]
|
||||
# f_out.write(prediction + '\n')
|
||||
#
|
18
roberta_year_as_token_finetunned/config.py
Normal file
18
roberta_year_as_token_finetunned/config.py
Normal file
@ -0,0 +1,18 @@
|
||||
LABELS_DICT = {'news':0,
|
||||
'sport':1,
|
||||
'business':2,
|
||||
'opinion':3,
|
||||
'culture':4,
|
||||
'lifestyle':5,
|
||||
'removed':6}
|
||||
|
||||
|
||||
LABELS_LIST = ['news',
|
||||
'sport',
|
||||
'business',
|
||||
'opinion',
|
||||
'culture',
|
||||
'lifestyle',
|
||||
'removed']
|
||||
|
||||
MODEL = 'roberta-base'
|
Loading…
Reference in New Issue
Block a user