roberta base with no year emb

This commit is contained in:
kubapok 2021-09-18 09:20:14 +02:00
parent b1f955fa88
commit d99a1c4e96
5 changed files with 13257 additions and 13251 deletions

File diff suppressed because it is too large Load Diff

View File

@ -16,14 +16,14 @@ test_tokenized_datasets = test_dataset.map(tokenize_function, batched=True)
train_dataset = tokenized_datasets["train"].shuffle(seed=42) train_dataset = tokenized_datasets["train"].shuffle(seed=42)
eval_dataset_full = tokenized_datasets["test"] eval_dataset_full = tokenized_datasets["test"]
eval_dataset = tokenized_datasets["test"].select(range(2000)) eval_dataset_small = tokenized_datasets["test"].select(range(2000))
test_dataset = test_tokenized_datasets["train"] test_dataset = test_tokenized_datasets["train"]
with open('train_dataset.pickle','wb') as f_p: with open('train_dataset.pickle','wb') as f_p:
pickle.dump(train_dataset, f_p) pickle.dump(train_dataset, f_p)
with open('eval_dataset.pickle','wb') as f_p: with open('eval_dataset_small.pickle','wb') as f_p:
pickle.dump(eval_dataset, f_p) pickle.dump(eval_dataset_small, f_p)
with open('eval_dataset_full.pickle','wb') as f_p: with open('eval_dataset_full.pickle','wb') as f_p:
pickle.dump(eval_dataset_full, f_p) pickle.dump(eval_dataset_full, f_p)

View File

@ -4,8 +4,8 @@ from config import LABELS_LIST, MODEL
with open('train_dataset.pickle','rb') as f_p: with open('train_dataset.pickle','rb') as f_p:
train_dataset = pickle.load(f_p) train_dataset = pickle.load(f_p)
with open('eval_dataset.pickle','rb') as f_p: with open('eval_dataset_small.pickle','rb') as f_p:
eval_dataset = pickle.load(f_p) eval_dataset_small = pickle.load(f_p)
with open('eval_dataset_full.pickle','rb') as f_p: with open('eval_dataset_full.pickle','rb') as f_p:
eval_dataset_full = pickle.load(f_p) eval_dataset_full = pickle.load(f_p)
@ -25,10 +25,15 @@ training_args = TrainingArguments("test_trainer",
per_device_train_batch_size=4, per_device_train_batch_size=4,
per_device_eval_batch_size=4, per_device_eval_batch_size=4,
evaluation_strategy='steps', evaluation_strategy='steps',
eval_steps=2_000, #eval_steps=2_000,
gradient_accumulation_steps=10, #save_steps=2_000,
eval_steps=20_000,
save_steps=20_000,
num_train_epochs=1,
gradient_accumulation_steps=2,
learning_rate = 1e-6, learning_rate = 1e-6,
warmup_steps=4_000, #warmup_steps=4_000,
warmup_steps=4,
load_best_model_at_end=True, load_best_model_at_end=True,
) )
@ -49,10 +54,11 @@ trainer = Trainer(
model=model, model=model,
args=training_args, args=training_args,
train_dataset=train_dataset, train_dataset=train_dataset,
eval_dataset=eval_dataset, eval_dataset=eval_dataset_small,
compute_metrics=compute_metrics, compute_metrics=compute_metrics,
) )
#trainer.train(resume_from_checkpoint=True)
trainer.train() trainer.train()
trainer.save_model("./roberta-retrained") trainer.save_model("./roberta-retrained")
trainer.evaluate() trainer.evaluate()

View File

@ -8,7 +8,7 @@ device = 'cpu'
from transformers import AutoModelForSequenceClassification from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained('test_trainer/checkpoint-82000/') model = AutoModelForSequenceClassification.from_pretrained('test_trainer/checkpoint-80/')
tokenizer = AutoTokenizer.from_pretrained(MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL)
for dataset in ('dev-0', 'test-A'): for dataset in ('dev-0', 'test-A'):

File diff suppressed because it is too large Load Diff