import pickle from config import LABELS_LIST, MODEL with open('train_dataset.pickle','rb') as f_p: train_dataset = pickle.load(f_p) with open('eval_dataset_small.pickle','rb') as f_p: eval_dataset_small = pickle.load(f_p) with open('eval_dataset_full.pickle','rb') as f_p: eval_dataset_full = pickle.load(f_p) from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained(MODEL, num_labels=7) from transformers import TrainingArguments training_args = TrainingArguments("test_trainer", per_device_train_batch_size=4, per_device_eval_batch_size=4, evaluation_strategy='steps', #eval_steps=2_000, #save_steps=2_000, eval_steps=2_000, save_steps=20_000, num_train_epochs=1, gradient_accumulation_steps=2, learning_rate = 1e-6, #warmup_steps=4_000, warmup_steps=4, load_best_model_at_end=True, ) import numpy as np from datasets import load_metric metric = load_metric("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset_small, compute_metrics=compute_metrics, ) #trainer.train(resume_from_checkpoint=True) trainer.train() trainer.save_model("./roberta-retrained") trainer.evaluate() eval_predictions = trainer.predict(eval_dataset_full).predictions.argmax(1) with open('../dev-0/out.tsv', 'w') as f_out: for pred in eval_predictions: f_out.write(LABELS_LIST[pred] + '\n')