import pickle from config import LABELS_LIST, MODEL from transformers import AutoTokenizer from tqdm import tqdm device = 'cuda' model_path= '/media/kuba/ssdsam/transformers/examples/pytorch/text-classification/roberta-ireland' from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained(model_path).cuda() tokenizer = AutoTokenizer.from_pretrained(MODEL) for dataset in ('dev-0', 'test-A'): with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/out.tsv','w') as f_out: for line_in in tqdm(f_in, total=150_000): _,_, text = line_in.split('\t') text = text.rstrip('\n') inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt").to(device) outputs = model(**inputs) probs = outputs[0].softmax(1) prediction = LABELS_LIST[probs.argmax(1)] f_out.write(prediction + '\n')