import pickle from datasets import load_dataset from transformers import AutoTokenizer from config import MODEL dataset = load_dataset('csv', sep='\t', data_files={'train': ['../train/huggingface_format.tsv'], 'test': ['../dev-0/huggingface_format.tsv']}) test_dataset = load_dataset('csv', sep='\t', data_files ='../test-A/huggingface_format.tsv') tokenizer = AutoTokenizer.from_pretrained(MODEL) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) test_tokenized_datasets = test_dataset.map(tokenize_function, batched=True) train_dataset = tokenized_datasets["train"].shuffle(seed=42) eval_dataset_full = tokenized_datasets["test"] eval_dataset_small = tokenized_datasets["test"].select(range(2000)) test_dataset = test_tokenized_datasets["train"] with open('train_dataset.pickle','wb') as f_p: pickle.dump(train_dataset, f_p) with open('eval_dataset_small.pickle','wb') as f_p: pickle.dump(eval_dataset_small, f_p) with open('eval_dataset_full.pickle','wb') as f_p: pickle.dump(eval_dataset_full, f_p) with open('test_dataset.pickle','wb') as f_p: pickle.dump(test_dataset, f_p)