623 lines
26 KiB
Python
Executable File
623 lines
26 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for sequence to sequence.
|
|
"""
|
|
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import nltk # Here to have a nice missing dependency error message early on
|
|
import numpy as np
|
|
from datasets import load_dataset, load_metric
|
|
|
|
import transformers
|
|
from filelock import FileLock
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
DataCollatorForSeq2Seq,
|
|
HfArgumentParser,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.file_utils import is_offline_mode
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.11.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
nltk.data.find("tokenizers/punkt")
|
|
except (LookupError, OSError):
|
|
if is_offline_mode():
|
|
raise LookupError(
|
|
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
|
|
)
|
|
with FileLock(".lock") as lock:
|
|
nltk.download("punkt", quiet=True)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
text_column: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
|
)
|
|
summary_column: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
|
|
"(a jsonlines or csv file)."
|
|
},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_source_length: Optional[int] = field(
|
|
default=1024,
|
|
metadata={
|
|
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
max_target_length: Optional[int] = field(
|
|
default=128,
|
|
metadata={
|
|
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
val_max_target_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
|
"during ``evaluate`` and ``predict``."
|
|
},
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to pad all samples to model maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
|
"efficient on GPU but very bad for TPU."
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
num_beams: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
|
|
"which is used during ``evaluate`` and ``predict``."
|
|
},
|
|
)
|
|
ignore_pad_token_for_loss: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
|
},
|
|
)
|
|
source_prefix: Optional[str] = field(
|
|
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
if self.val_max_target_length is None:
|
|
self.val_max_target_length = self.max_target_length
|
|
|
|
|
|
summarization_name_mapping = {
|
|
"amazon_reviews_multi": ("review_body", "review_title"),
|
|
"big_patent": ("description", "abstract"),
|
|
"cnn_dailymail": ("article", "highlights"),
|
|
"orange_sum": ("text", "summary"),
|
|
"pn_summary": ("article", "summary"),
|
|
"psc": ("extract_text", "summary_text"),
|
|
"samsum": ("dialogue", "summary"),
|
|
"thaisum": ("body", "summary"),
|
|
"xglue": ("news_body", "news_title"),
|
|
"xsum": ("document", "summary"),
|
|
"wiki_summary": ("article", "highlights"),
|
|
}
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
if data_args.source_prefix is None and model_args.model_name_or_path in [
|
|
"t5-small",
|
|
"t5-base",
|
|
"t5-large",
|
|
"t5-3b",
|
|
"t5-11b",
|
|
]:
|
|
logger.warning(
|
|
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
|
|
"`--source_prefix 'summarize: ' `"
|
|
)
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
|
|
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(
|
|
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, sep = '\t',
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if data_args.test_file is not None:
|
|
data_files["test"] = data_args.test_file
|
|
extension = data_args.test_file.split(".")[-1]
|
|
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir, sep ='\t')
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
if model.config.decoder_start_token_id is None:
|
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
|
|
|
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
if training_args.do_train:
|
|
column_names = raw_datasets["train"].column_names
|
|
elif training_args.do_eval:
|
|
column_names = raw_datasets["validation"].column_names
|
|
elif training_args.do_predict:
|
|
column_names = raw_datasets["test"].column_names
|
|
else:
|
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
|
return
|
|
|
|
# Get the column names for input/target.
|
|
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
|
|
if data_args.text_column is None:
|
|
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
|
else:
|
|
text_column = data_args.text_column
|
|
if text_column not in column_names:
|
|
raise ValueError(
|
|
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
if data_args.summary_column is None:
|
|
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
|
else:
|
|
summary_column = data_args.summary_column
|
|
if summary_column not in column_names:
|
|
raise ValueError(
|
|
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
|
|
# Temporarily set max_target_length for training.
|
|
max_target_length = data_args.max_target_length
|
|
padding = "max_length" if data_args.pad_to_max_length else False
|
|
|
|
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
|
|
logger.warning(
|
|
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
|
|
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
|
|
)
|
|
|
|
def preprocess_function(examples):
|
|
inputs = examples[text_column]
|
|
targets = examples[summary_column]
|
|
inputs = [prefix + inp for inp in inputs]
|
|
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
|
|
|
|
# Setup the tokenizer for targets
|
|
#import pdb; pdb.set_trace()
|
|
targets = [str(a) for a in targets]
|
|
with tokenizer.as_target_tokenizer():
|
|
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
|
|
|
|
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
|
# padding in the loss.
|
|
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
|
labels["input_ids"] = [
|
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
|
]
|
|
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
if training_args.do_train:
|
|
if "train" not in raw_datasets:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = raw_datasets["train"]
|
|
if data_args.max_train_samples is not None:
|
|
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
|
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
|
train_dataset = train_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on train dataset",
|
|
)
|
|
|
|
if training_args.do_eval:
|
|
max_target_length = data_args.val_max_target_length
|
|
if "validation" not in raw_datasets:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
eval_dataset = raw_datasets["validation"]
|
|
if data_args.max_eval_samples is not None:
|
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
|
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
|
eval_dataset = eval_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on validation dataset",
|
|
)
|
|
|
|
if training_args.do_predict:
|
|
max_target_length = data_args.val_max_target_length
|
|
if "test" not in raw_datasets:
|
|
raise ValueError("--do_predict requires a test dataset")
|
|
predict_dataset = raw_datasets["test"]
|
|
if data_args.max_predict_samples is not None:
|
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
|
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
|
predict_dataset = predict_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on prediction dataset",
|
|
)
|
|
|
|
# Data collator
|
|
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
|
data_collator = DataCollatorForSeq2Seq(
|
|
tokenizer,
|
|
model=model,
|
|
label_pad_token_id=label_pad_token_id,
|
|
pad_to_multiple_of=8 if training_args.fp16 else None,
|
|
)
|
|
|
|
# Metric
|
|
metric = load_metric("rouge")
|
|
|
|
def postprocess_text(preds, labels):
|
|
preds = [pred.strip() for pred in preds]
|
|
labels = [label.strip() for label in labels]
|
|
|
|
# rougeLSum expects newline after each sentence
|
|
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
|
|
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
|
|
|
|
return preds, labels
|
|
|
|
def compute_metrics(eval_preds):
|
|
preds, labels = eval_preds
|
|
if isinstance(preds, tuple):
|
|
preds = preds[0]
|
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
if data_args.ignore_pad_token_for_loss:
|
|
# Replace -100 in the labels as we can't decode them.
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
|
|
# Some simple post-processing
|
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
|
|
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
|
# Extract a few results from ROUGE
|
|
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
|
|
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
|
result["gen_len"] = np.mean(prediction_lens)
|
|
result = {k: round(v, 4) for k, v in result.items()}
|
|
return result
|
|
|
|
# Initialize our Trainer
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
results = {}
|
|
max_length = (
|
|
training_args.generation_max_length
|
|
if training_args.generation_max_length is not None
|
|
else data_args.val_max_target_length
|
|
)
|
|
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
if training_args.do_predict:
|
|
logger.info("*** Predict ***")
|
|
|
|
predict_results = trainer.predict(
|
|
predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
|
|
)
|
|
metrics = predict_results.metrics
|
|
max_predict_samples = (
|
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
|
)
|
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
|
|
|
trainer.log_metrics("predict", metrics)
|
|
trainer.save_metrics("predict", metrics)
|
|
|
|
if trainer.is_world_process_zero():
|
|
if training_args.predict_with_generate:
|
|
predictions = tokenizer.batch_decode(
|
|
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
predictions = [pred.strip() for pred in predictions]
|
|
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
|
|
with open(output_prediction_file, "w") as writer:
|
|
writer.write("\n".join(predictions))
|
|
|
|
if training_args.push_to_hub:
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
|
|
if data_args.dataset_name is not None:
|
|
kwargs["dataset_tags"] = data_args.dataset_name
|
|
if data_args.dataset_config_name is not None:
|
|
kwargs["dataset_args"] = data_args.dataset_config_name
|
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
|
else:
|
|
kwargs["dataset"] = data_args.dataset_name
|
|
|
|
trainer.push_to_hub(**kwargs)
|
|
|
|
return results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|