paranormal-or-skeptic-ISI-p.../classificator.py

132 lines
4.3 KiB
Python
Raw Normal View History

2021-05-25 23:15:32 +02:00
import numpy as np
import pandas as pd
import torch
import gensim
import gensim.downloader as api
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.metrics import accuracy_score
def load_train_data():
data = pd.read_csv("train/in.tsv.xz", sep='\t', names=['text', 'id'], nrows=30000)
data = data.drop(columns=['id'])
labels_df = pd.read_csv("train/expected.tsv", sep='\t', names=['label'], nrows=30000)
labels = labels_df['label'].values
return data, labels
def load_test_data():
data = pd.read_csv("test-A/in.tsv.xz", sep='\t', names=['text', 'id'])
data = data.drop(columns=['id'])
return data
def load_dev_data():
data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', names=['text', 'id'])
data = data.drop(columns=['id'])
labels_df = pd.read_csv("dev-0/expected.tsv", sep='\t', names=['label'])
labels = labels_df['label'].values
return data, labels
class NeuralNetworkModel(torch.nn.Module):
def __init__(self, features):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(features, 500)
self.fc2 = torch.nn.Linear(500, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
# def tokenize(doc):
# doc_splited = doc.split(" ")
# doc_tokenized = [list(set(gensim.utils.tokenize(x, lowercase=True))) for x in doc_splited]
# doc_tokenized_str = ""
# print(doc_tokenized)
# for word in doc_tokenized:
# doc_tokenized_str += word[0]
# doc_tokenized += " "
# print(doc_tokenized_str)
# return doc_tokenized_str
# def document_vector(doc):
# """Create document vectors by averaging word vectors. Remove out-of-vocabulary words."""
# doc = [word for word in doc if word in w2v.key_to_index]
# return np.mean(w2v[doc], axis=0)
def train_model(model, X, Y, batch_size=5, epoch_amount=5):
for epoch in range(epoch_amount):
loss_score = 0
acc_score = 0
items_total = 0
model.train()
for i in range(0, Y.shape[0], batch_size):
X_step = X[i:i + batch_size]
X_step = torch.tensor(X_step.astype(np.float32).todense())
Y_step = Y[i:i + batch_size]
Y_step = torch.tensor(Y_step.astype(np.float32)).reshape(-1, 1)
Y_predictions = model(X_step)
acc_score += torch.sum((Y_predictions > 0.5) == Y_step).item()
items_total += Y_step.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y_step)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y_step.shape[0]
print("epoch: ", epoch+1, "/", epoch_amount)
return (loss_score / items_total), (acc_score / items_total)
def test_model(model, X):
model.eval()
X = torch.tensor(X.astype(np.float32).todense())
Y_raw = model(X)
Y = [1 if x > 0.5 else 0 for x in Y_raw.detach().numpy()]
return Y
if __name__ == "__main__":
# loading and prepearing data
# w2v = api.load('fasttext-wiki-news-subwords-300')
print("Loading data...")
data, Y = load_train_data()
FEATURES = 20000
BATCH = 5
EPOCHES = 5
# text vectorization
print("Vectorizing text data...")
vectorizer = HashingVectorizer(n_features=FEATURES)
X = vectorizer.fit_transform(data['text'].values)
#X = []
# for doc in data['text'].values:
# X.append(document_vector(tokenize(doc)))
# X = np.asarray(X)
# print(X[:5])
# train model
print("Training model...")
nn_model = NeuralNetworkModel(FEATURES)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
train_model(nn_model, X, Y, BATCH, EPOCHES)
# test model
print("Testing model...")
data_dev, Y_dev_exp = load_dev_data()
X_dev = vectorizer.transform(data_dev['text'].values)
Y_dev_pred = test_model(nn_model, X_dev)
# acc = accuracy_score(Y_dev_exp, Y_dev_pred)
# print("dev accuracy: ", acc)
np.savetxt("dev-0/out.tsv", Y_dev_pred, fmt='%i', delimiter="\t")
data_test = load_test_data()
X_test = vectorizer.transform(data_test['text'].values)
Y_test_pred = test_model(nn_model, X_test)
np.savetxt("test-A/out.tsv", Y_test_pred, fmt='%i', delimiter="\t")