2021-04-20 18:55:51 +02:00
|
|
|
import numpy as np
|
|
|
|
from sklearn import preprocessing
|
2021-04-20 22:51:32 +02:00
|
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
|
|
from sklearn.pipeline import make_pipeline
|
2021-04-20 18:55:51 +02:00
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
2021-04-20 22:51:32 +02:00
|
|
|
|
2021-04-20 18:55:51 +02:00
|
|
|
le=preprocessing.LabelEncoder()
|
|
|
|
|
2021-04-20 22:51:32 +02:00
|
|
|
|
2021-04-20 18:55:51 +02:00
|
|
|
with open("train/in.tsv") as f:
|
2021-04-20 22:51:32 +02:00
|
|
|
X = f.readlines()
|
2021-04-20 18:55:51 +02:00
|
|
|
with open("train/expected.tsv") as ff:
|
|
|
|
Y = ff.readlines()
|
2021-04-20 22:51:32 +02:00
|
|
|
Y= le.fit_transform(Y)
|
|
|
|
with open("test-A/in.tsv") as d:
|
|
|
|
r = d.readlines()
|
|
|
|
gnb = make_pipeline(TfidfVectorizer(),MultinomialNB())
|
2021-04-20 18:55:51 +02:00
|
|
|
model=gnb.fit(X, Y)
|
2021-04-20 22:51:32 +02:00
|
|
|
y_pred=model.predict(r)
|
2021-04-20 18:55:51 +02:00
|
|
|
y_pred=np.array(y_pred)
|
2021-04-20 22:51:32 +02:00
|
|
|
np.set_printoptions(threshold=np.inf)
|
|
|
|
t=np.array2string(y_pred.flatten(), precision=2, separator='\n',suppress_small=True)
|
|
|
|
f = open("test-A/out.tsv", "a")
|
2021-04-20 18:55:51 +02:00
|
|
|
f.write(t)
|