2021-05-11 16:06:32 +02:00
|
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
import tensorflow as tf
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
|
2021-05-13 15:53:20 +02:00
|
|
|
from sklearn.feature_extraction.text import HashingVectorizer
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.optim as optim
|
|
|
|
import torch
|
|
|
|
from torch.optim import optimizer
|
2021-05-11 16:06:32 +02:00
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
vectorizer = HashingVectorizer(n_features=20)
|
|
|
|
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
2021-05-11 16:06:32 +02:00
|
|
|
|
|
|
|
print('debug 1')
|
|
|
|
train_df = pd.read_csv('train/in.tsv', header=None, sep='\t')
|
|
|
|
test_df = pd.read_csv('test-A/in.tsv', header=None, sep='\t')
|
|
|
|
dev_df = pd.read_csv('dev-0/in.tsv', header=None, sep='\t')
|
|
|
|
train_expected = pd.read_csv('train/expected.tsv', header=None, sep='\t')
|
|
|
|
|
|
|
|
train_text = train_df[0].tolist()
|
|
|
|
test_text = test_df[0].tolist()
|
|
|
|
dev_text = test_df[0].tolist()
|
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
text_data = train_text
|
|
|
|
|
|
|
|
# print(train_text)
|
2021-05-11 16:06:32 +02:00
|
|
|
|
|
|
|
vectorize_layer = TextVectorization(max_tokens=5, output_mode="int")
|
|
|
|
text_data = tf.data.Dataset.from_tensor_slices(text_data)
|
|
|
|
vectorize_layer.adapt(text_data.batch(64))
|
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
|
|
|
|
|
2021-05-11 16:06:32 +02:00
|
|
|
inputs = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name="text")
|
|
|
|
outputs = vectorize_layer(inputs)
|
|
|
|
model = tf.keras.Model(inputs, outputs)
|
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
print('model loaded')
|
|
|
|
train_text = train_df[0].apply(lambda x: vectorizer.transform([x]))
|
|
|
|
test_text = test_df[0].apply(lambda x: vectorizer.transform([x]))
|
|
|
|
|
|
|
|
x_train = train_text.tolist()
|
|
|
|
x_test = test_text.tolist()
|
|
|
|
# x_train = list(map(model.predict, train_text))
|
|
|
|
# x_train = [model.predict([x]) for x in train_text]
|
|
|
|
y_train = train_expected[0].astype(np.float32)
|
|
|
|
# x_test = list(map(model.predict, test_text))
|
|
|
|
# x_test = [model.predict([x]) for x in test_text]
|
2021-05-11 16:06:32 +02:00
|
|
|
loss_function = nn.CrossEntropyLoss()
|
|
|
|
|
|
|
|
x_train = pd.DataFrame(x_train)
|
|
|
|
x_test = pd.DataFrame(x_test)
|
2021-05-13 15:53:20 +02:00
|
|
|
y_train = pd.DataFrame(y_train)
|
|
|
|
print("End of vectorization")
|
2021-05-11 16:06:32 +02:00
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
# print((model.predict("Murder in the forset!")))
|
2021-05-11 16:06:32 +02:00
|
|
|
|
|
|
|
|
|
|
|
class FeedforwardNeuralNetModel(nn.Module):
|
2021-05-13 15:53:20 +02:00
|
|
|
def __init__(self):
|
2021-05-11 16:06:32 +02:00
|
|
|
super(FeedforwardNeuralNetModel, self).__init__()
|
2021-05-13 15:53:20 +02:00
|
|
|
# Linear function 1: vocab_size --> 500
|
|
|
|
self.fc1 = nn.Linear(FEAUTERES, 500)
|
|
|
|
# Non-linearity 1
|
|
|
|
self.fc2 = nn.Linear(500,1)
|
|
|
|
# self.relu1 = nn.ReLU()
|
2021-05-11 16:06:32 +02:00
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
# Linear function 2: 500 --> 500
|
|
|
|
# self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
|
|
|
# Non-linearity 2
|
|
|
|
# self.relu2 = nn.ReLU()
|
2021-05-11 16:06:32 +02:00
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
# Linear function 3 (readout): 500 --> 3
|
|
|
|
# self.fc3 = nn.Linear(hidden_dim, output_dim)
|
2021-05-11 16:06:32 +02:00
|
|
|
|
|
|
|
def forward(self, x):
|
2021-05-13 15:53:20 +02:00
|
|
|
# Linear function 1
|
2021-05-11 16:06:32 +02:00
|
|
|
out = self.fc1(x)
|
2021-05-13 15:53:20 +02:00
|
|
|
# Non-linearity 1
|
|
|
|
out = self.relu1(out)
|
|
|
|
|
|
|
|
# Non-linearity 2
|
|
|
|
out = self.relu2(out)
|
2021-05-11 16:06:32 +02:00
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
# Linear function 3 (readout)
|
2021-05-11 16:06:32 +02:00
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
num_epochs = 2
|
|
|
|
|
2021-05-13 15:53:20 +02:00
|
|
|
x_dict = x_train.to_dict()
|
|
|
|
y_train = y_train.to_dict()
|
|
|
|
|
|
|
|
|
|
|
|
nn_model = FeedforwardNeuralNetModel()
|
|
|
|
BATCH_SIZE = 5
|
|
|
|
criterion = torch.nn.BCELoss()
|
|
|
|
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
|
|
|
|
|
|
|
for epoch in range(5):
|
|
|
|
loss_score = 0
|
|
|
|
acc_score = 0
|
|
|
|
items_total = 0
|
|
|
|
nn_model.train()
|
|
|
|
for i in range(0, Y_train.shape[0], BATCH_SIZE):
|
|
|
|
X = X_train[i:i+BATCH_SIZE]
|
|
|
|
X = torch.tensor(X.astype(np.float32).todense())
|
|
|
|
Y = Y_train[i:i+BATCH_SIZE]
|
|
|
|
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
|
|
|
Y_predictions = nn_model(X)
|
|
|
|
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
|
|
|
items_total += Y.shape[0]
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss = criterion(Y_predictions, Y)
|
2021-05-11 16:06:32 +02:00
|
|
|
loss.backward()
|
2021-05-13 15:53:20 +02:00
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
loss_score += loss.item() * Y.shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
# for epoch in range(num_epochs):
|
|
|
|
# if (epoch + 1) % 25 == 0:
|
|
|
|
# print("Epoch completed: " + str(epoch + 1))
|
|
|
|
# print(f"Epoch number: {epoch}")
|
|
|
|
# train_loss = 0
|
|
|
|
# for index, row in x_train.iterrows():
|
|
|
|
# # for index, row in x_train.iterrows():
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# print(row, index)
|
|
|
|
# # Forward pass to get output
|
|
|
|
# probs = x_train[0][index]
|
|
|
|
# # probs = torch.tensor(probs.astype(np.float32))
|
|
|
|
# # Get the target label
|
|
|
|
# target = y_train[0][index]
|
|
|
|
# print(target)
|
|
|
|
# # target = np.array(target).astype(np.float32)
|
|
|
|
# print(type(target))
|
|
|
|
# # target = .astype(np.float32).reshape(-1,1)
|
|
|
|
# # target
|
|
|
|
# # target = torch.tensor(target.astype(np.float32)).reshape(-1,1)
|
|
|
|
#
|
|
|
|
# # Calculate Loss: softmax --> cross entropy loss
|
|
|
|
# loss = loss_function(probs, target)
|
|
|
|
# # Accumulating the loss over time
|
|
|
|
# train_loss += loss.item()
|
|
|
|
#
|
|
|
|
# # Getting gradients w.r.t. parameters
|
|
|
|
# loss.backward()
|
|
|
|
#
|
|
|
|
# train_loss = 0
|
|
|
|
|
|
|
|
|
|
|
|
# bow_ff_nn_predictions = []
|
|
|
|
# original_lables_ff_bow = []
|
|
|
|
# with torch.no_grad():
|
|
|
|
# for index, row in x_test.iterrows():
|
|
|
|
# probs = x_test[0][index]
|
|
|
|
# bow_ff_nn_predictions.append(torch.argmax(probs, dim=1).cpu().numpy()[0])
|
|
|
|
#
|
|
|
|
# print(bow_ff_nn_predictions)
|