94 lines
3.4 KiB
Python
94 lines
3.4 KiB
Python
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import torch
|
||
|
import csv
|
||
|
import gensim.downloader
|
||
|
import torch
|
||
|
from nltk import word_tokenize
|
||
|
|
||
|
class NeuralNetwork(torch.nn.Module):
|
||
|
def __init__(self, input_size, hidden_size, num_classes):
|
||
|
super(NeuralNetwork, self).__init__()
|
||
|
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
||
|
self.l2 = torch.nn.Linear(hidden_size, num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.l1(x)
|
||
|
x = torch.relu(x)
|
||
|
x = self.l2(x)
|
||
|
x = torch.sigmoid(x)
|
||
|
return x
|
||
|
|
||
|
print('STEP 1 - LOAD DATA')
|
||
|
names = ['content', 'id', 'label']
|
||
|
train_data_content = pd.read_table('train/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||
|
train_data_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[2:])
|
||
|
dev_data = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||
|
test_data = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||
|
|
||
|
print('STEP 2 - SET PARAMS')
|
||
|
hidden_size = int(input('Hidden units size: ') or '600')
|
||
|
epochs = int(input("Epochs: ") or '5')
|
||
|
batch_size = int(input("Batch size: ") or '15')
|
||
|
|
||
|
print('STEP 3 - PREPROCESSING')
|
||
|
# lowercase all content
|
||
|
X_train = train_data_content['content'].str.lower()
|
||
|
y_train = train_data_labels['label']
|
||
|
X_dev = dev_data['content'].str.lower()
|
||
|
X_test = test_data['content'].str.lower()
|
||
|
|
||
|
# tokenize datasets
|
||
|
X_train = [word_tokenize(content) for content in X_train]
|
||
|
X_dev = [word_tokenize(content) for content in X_dev]
|
||
|
X_test = [word_tokenize(content) for content in X_test]
|
||
|
|
||
|
# use Google word2vec algorithm
|
||
|
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
||
|
X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train]
|
||
|
X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev]
|
||
|
X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test]
|
||
|
|
||
|
print('STEP 4 - MODEL TRAINING')
|
||
|
#prepare neural model
|
||
|
|
||
|
model = NeuralNetwork(300, hidden_size, 1)
|
||
|
criterion = torch.nn.BCELoss()
|
||
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
||
|
|
||
|
for epoch in range(epochs):
|
||
|
model.train()
|
||
|
for i in range(0, y_train.shape[0], batch_size):
|
||
|
X = X_train[i:i+batch_size]
|
||
|
X = torch.tensor(X)
|
||
|
y = y_train[i:i+batch_size]
|
||
|
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||
|
outputs = model(X.float())
|
||
|
loss = criterion(outputs, y)
|
||
|
optimizer.zero_grad()
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
print('STEP 5 - PREDICTION')
|
||
|
y_dev, y_test = [], []
|
||
|
model.eval()
|
||
|
with torch.no_grad():
|
||
|
for i in range(0, len(X_dev), batch_size):
|
||
|
X = X_dev[i:i+batch_size]
|
||
|
X = torch.tensor(X)
|
||
|
outputs = model(X.float())
|
||
|
prediction = (outputs > 0.5)
|
||
|
y_dev += prediction.tolist()
|
||
|
for i in range(0, len(X_test), batch_size):
|
||
|
X = X_test[i:i+batch_size]
|
||
|
X = torch.tensor(X)
|
||
|
outputs = model(X.float())
|
||
|
y = (outputs > 0.5)
|
||
|
y_test += prediction.tolist()
|
||
|
|
||
|
print('STEP 6 - EXPORT RESULTS')
|
||
|
# export results to tsv
|
||
|
y_dev = np.asarray(y_dev, dtype=np.int32)
|
||
|
y_test = np.asarray(y_test, dtype=np.int32)
|
||
|
y_dev.tofile('./dev-0/out.tsv', sep='\n')
|
||
|
y_test.tofile('./test-A/out.tsv', sep='\n')
|