Test 2 Outputs
This commit is contained in:
parent
68a99a2c2d
commit
c68b2d0d1a
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 38,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -11,21 +11,22 @@
|
|||||||
"import torch\n",
|
"import torch\n",
|
||||||
"import csv\n",
|
"import csv\n",
|
||||||
"from nltk.tokenize import word_tokenize\n",
|
"from nltk.tokenize import word_tokenize\n",
|
||||||
"from gensim.models import Word2Vec\n",
|
"#from gensim.models import Word2Vec\n",
|
||||||
"import gensim.downloader"
|
"import gensim.downloader as api"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 39,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"#Sieć neuronowa z ćwiczeń 8\n",
|
||||||
"class NeuralNetwork(torch.nn.Module): \n",
|
"class NeuralNetwork(torch.nn.Module): \n",
|
||||||
" def __init__(self, input_size, hidden_size, num_classes):\n",
|
" def __init__(self, hidden_size):\n",
|
||||||
" super(NeuralNetwork, self).__init__()\n",
|
" super(NeuralNetwork, self).__init__()\n",
|
||||||
" self.l1 = torch.nn.Linear(input_size, hidden_size)\n",
|
" self.l1 = torch.nn.Linear(300, hidden_size) #Korzystamy z Googlowego word2vec-google-news-300 który ma zawsze na wejściu wymiar 300\n",
|
||||||
" self.l2 = torch.nn.Linear(hidden_size, num_classes)\n",
|
" self.l2 = torch.nn.Linear(hidden_size, 1)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" def forward(self, x):\n",
|
" def forward(self, x):\n",
|
||||||
" x = self.l1(x)\n",
|
" x = self.l1(x)\n",
|
||||||
@ -37,68 +38,35 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 40,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"col_names = ['content', 'id', 'label']\n"
|
"# Wczytanie X i Y do Train oraz X do Dev i Test\n",
|
||||||
|
"X_train = pd.read_table('train/in.tsv', sep='\\t', error_bad_lines=False, quoting=3, header=None, names=['content', 'id'], usecols=['content'])\n",
|
||||||
|
"y_train = pd.read_table('train/expected.tsv', sep='\\t', error_bad_lines=False, quoting=3, header=None, names=['label'])\n",
|
||||||
|
"X_dev = pd.read_table('dev-0/in.tsv', sep='\\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content'])\n",
|
||||||
|
"X_test = pd.read_table('test-A/in.tsv', sep='\\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content'])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 41,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Wczytanie danych...\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"print('Wczytanie danych...')\n",
|
"# Preprocessing danych\n",
|
||||||
"# loading dataset\n",
|
|
||||||
"train_set_features = pd.read_table('train/in.tsv.xz', error_bad_lines=False, quoting=csv.QUOTE_NONE, header=None, names=col_names[:2])\n",
|
|
||||||
"train_set_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, quoting=csv.QUOTE_NONE, header=None, names=col_names[2:])\n",
|
|
||||||
"dev_set = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=col_names[:2])\n",
|
|
||||||
"test_set = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=col_names[:2])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Preprocessing danych...\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print('Preprocessing danych...')\n",
|
|
||||||
"# lowercase\n",
|
"# lowercase\n",
|
||||||
"X_train = train_set_features['content'].str.lower()\n",
|
"# https://www.datacamp.com/community/tutorials/case-conversion-python\n",
|
||||||
"y_train = train_set_labels['label']"
|
"X_train = X_train.content.str.lower()\n",
|
||||||
|
"y_train = y_train['label']\n",
|
||||||
|
"X_dev = X_dev.content.str.lower()\n",
|
||||||
|
"X_test = X_test.content.str.lower()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 42,
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"X_dev = dev_set['content'].str.lower()\n",
|
|
||||||
"X_test = test_set['content'].str.lower()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 7,
|
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -110,55 +78,40 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 44,
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"[==================================================] 100.0% 1662.8/1662.8MB downloaded\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"# word2vec\n",
|
|
||||||
"word2vec = gensim.downloader.load('word2vec-google-news-300')\n",
|
|
||||||
"X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train]\n",
|
|
||||||
"X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev]\n",
|
|
||||||
"X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 9,
|
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"model = NeuralNetwork(300, 600, 1)\n",
|
"# word2vec\n",
|
||||||
"\n",
|
"# https://radimrehurek.com/gensim/auto_examples/howtos/run_downloader_api.html\n",
|
||||||
"criterion = torch.nn.BCELoss()\n",
|
"w2v = api.load('word2vec-google-news-300')\n",
|
||||||
"optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)\n",
|
"X_train = [np.mean([w2v[w] for w in content if w in w2v] or [np.zeros(300)], axis=0) for content in X_train]\n",
|
||||||
"\n",
|
"X_dev = [np.mean([w2v[w] for w in content if w in w2v] or [np.zeros(300)], axis=0) for content in X_dev]\n",
|
||||||
"batch_size = 10"
|
"X_test = [np.mean([w2v[w] for w in content if w in w2v] or [np.zeros(300)], axis=0) for content in X_test]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 45,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Trenowanie modelu...\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"print('Trenowanie modelu...')\n",
|
"model = NeuralNetwork(600)\n",
|
||||||
"for epoch in range(6):\n",
|
"\n",
|
||||||
|
"criterion = torch.nn.BCELoss()\n",
|
||||||
|
"optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)\n",
|
||||||
|
"\n",
|
||||||
|
"batch_size = 15"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 46,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Trening modelu z ćwiczeń 8\n",
|
||||||
|
"for epoch in range(5):\n",
|
||||||
" model.train()\n",
|
" model.train()\n",
|
||||||
" for i in range(0, y_train.shape[0], batch_size):\n",
|
" for i in range(0, y_train.shape[0], batch_size):\n",
|
||||||
" X = X_train[i:i+batch_size]\n",
|
" X = X_train[i:i+batch_size]\n",
|
||||||
@ -176,7 +129,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 47,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -218,13 +171,20 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 49,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"dev_prediction.tofile('./dev-0/out.tsv', sep='\\n')\n",
|
"dev_prediction.tofile('./dev-0/out.tsv', sep='\\n')\n",
|
||||||
"test_prediction.tofile('./test-A/out.tsv', sep='\\n')"
|
"test_prediction.tofile('./test-A/out.tsv', sep='\\n')"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
File diff suppressed because it is too large
Load Diff
556
dev-0/out.tsv
556
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
424
test-A/out.tsv
424
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
289579
train/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
289579
train/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
289579
train/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user