Compare commits

...

1 Commits

Author SHA1 Message Date
32b47206b9 zadanie 2021-05-02 16:26:07 +02:00
9 changed files with 311242 additions and 0 deletions

View File

@ -0,0 +1,323 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import patoolib\n",
"import os\n",
"import patoolib\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.naive_bayes import GaussianNB, MultinomialNB\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TRENING"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ROZPAKOWANIE I WCZYTANIE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting train/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- train/in.tsv.xz > train/in.tsv\n",
"patool: with shell=True\n",
"patool: ... train/in.tsv.xz extracted to `train/'.\n"
]
}
],
"source": [
"EXPECTED_FILE = open('train/expected.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"patoolib.extract_archive(\"train/in.tsv.xz\", outdir=\"train/\")\n",
"TRAIN = open('train/in.tsv', 'r', encoding=\"utf-8\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### WRZUCENIE DO ZMIENNYCH"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED = []\n",
"for line in EXPECTED_FILE:\n",
" EXPECTED.append(line)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_DATA = []\n",
"for line in TRAIN:\n",
" TRAIN_DATA.append(line)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ZAMKNIECIE ZMIENNYCH PLIKOW I USUNIECIE ROZPAKOWANIA"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_FILE.close()\n",
"TRAIN.close()\n",
"#os.remove(\"train/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### MODEL TRENINGOWY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_ENCODER = LabelEncoder().fit_transform(EXPECTED)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"PIPE = Pipeline(steps=[(\"TF-IDF\",TfidfVectorizer()), (\"BAYES\", MultinomialNB())])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_MODEL = PIPE.fit(TRAIN_DATA, EXPECTED_ENCODER)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## FUNKCJE"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def BayesFit(MODEL, DOC):\n",
" PREDICTION = MODEL.predict(DOC)\n",
" return PREDICTION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK DEV-0"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting dev-0/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- dev-0/in.tsv.xz > dev-0/in.tsv\n",
"patool: with shell=True\n",
"patool: ... dev-0/in.tsv.xz extracted to `dev-0/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"dev-0/in.tsv.xz\", outdir=\"dev-0/\")\n",
"INFILE = open('dev-0/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"dev-0/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"dev-0/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK TEST-A"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting test-A/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- test-A/in.tsv.xz > test-A/in.tsv\n",
"patool: with shell=True\n",
"patool: ... test-A/in.tsv.xz extracted to `test-A/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"test-A/in.tsv.xz\", outdir=\"test-A/\")\n",
"INFILE = open('test-A/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"test-A/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"test-A/in.tsv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

5272
dev-0/in.tsv Normal file

File diff suppressed because one or more lines are too long

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
geval Normal file

Binary file not shown.

323
solution.ipynb Normal file
View File

@ -0,0 +1,323 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import patoolib\n",
"import os\n",
"import patoolib\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.naive_bayes import GaussianNB, MultinomialNB\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TRENING"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ROZPAKOWANIE I WCZYTANIE"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting train/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- train/in.tsv.xz > train/in.tsv\n",
"patool: with shell=True\n",
"patool: ... train/in.tsv.xz extracted to `train/'.\n"
]
}
],
"source": [
"EXPECTED_FILE = open('train/expected.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"patoolib.extract_archive(\"train/in.tsv.xz\", outdir=\"train/\")\n",
"TRAIN = open('train/in.tsv', 'r', encoding=\"utf-8\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### WRZUCENIE DO ZMIENNYCH"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED = []\n",
"for line in EXPECTED_FILE:\n",
" EXPECTED.append(line)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_DATA = []\n",
"for line in TRAIN:\n",
" TRAIN_DATA.append(line)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ZAMKNIECIE ZMIENNYCH PLIKOW I USUNIECIE ROZPAKOWANIA"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_FILE.close()\n",
"TRAIN.close()\n",
"#os.remove(\"train/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### MODEL TRENINGOWY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"EXPECTED_ENCODER = LabelEncoder().fit_transform(EXPECTED)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"PIPE = Pipeline(steps=[(\"TF-IDF\",TfidfVectorizer()), (\"BAYES\", MultinomialNB())])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"TRAIN_MODEL = PIPE.fit(TRAIN_DATA, EXPECTED_ENCODER)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## FUNKCJE"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def BayesFit(MODEL, DOC):\n",
" PREDICTION = MODEL.predict(DOC)\n",
" return PREDICTION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK DEV-0"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting dev-0/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- dev-0/in.tsv.xz > dev-0/in.tsv\n",
"patool: with shell=True\n",
"patool: ... dev-0/in.tsv.xz extracted to `dev-0/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"dev-0/in.tsv.xz\", outdir=\"dev-0/\")\n",
"INFILE = open('dev-0/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"dev-0/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"dev-0/in.tsv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PLIK TEST-A"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patool: Extracting test-A/in.tsv.xz ...\n",
"patool: running \"\"C:\\Program Files\\Git\\mingw64\\bin\\xz.EXE\"\" -c -d -- test-A/in.tsv.xz > test-A/in.tsv\n",
"patool: with shell=True\n",
"patool: ... test-A/in.tsv.xz extracted to `test-A/'.\n"
]
}
],
"source": [
"patoolib.extract_archive(\"test-A/in.tsv.xz\", outdir=\"test-A/\")\n",
"INFILE = open('test-A/in.tsv', 'r', encoding=\"utf-8\")\n",
"\n",
"OUTFILE = open(\"test-A/out.tsv\", \"w\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"ALL_DOC = INFILE.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"for x in RESULT:\n",
" OUTFILE.write(str(x) + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"INFILE.close()\n",
"OUTFILE.close()\n",
"#os.remove(\"test-A/in.tsv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

169
solution.py Normal file
View File

@ -0,0 +1,169 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import patoolib
import os
import patoolib
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
# ## TRENING
# #### ROZPAKOWANIE I WCZYTANIE
# In[2]:
EXPECTED_FILE = open('train/expected.tsv', 'r', encoding="utf-8")
patoolib.extract_archive("train/in.tsv.xz", outdir="train/")
TRAIN = open('train/in.tsv', 'r', encoding="utf-8")
# #### WRZUCENIE DO ZMIENNYCH
# In[3]:
EXPECTED = []
for line in EXPECTED_FILE:
EXPECTED.append(line)
# In[4]:
TRAIN_DATA = []
for line in TRAIN:
TRAIN_DATA.append(line)
# #### ZAMKNIECIE ZMIENNYCH PLIKOW I USUNIECIE ROZPAKOWANIA
# In[5]:
EXPECTED_FILE.close()
TRAIN.close()
#os.remove("train/in.tsv")
# #### MODEL TRENINGOWY
# In[6]:
EXPECTED_ENCODER = LabelEncoder().fit_transform(EXPECTED)
# In[7]:
PIPE = Pipeline(steps=[("TF-IDF",TfidfVectorizer()), ("BAYES", MultinomialNB())])
# In[8]:
TRAIN_MODEL = PIPE.fit(TRAIN_DATA, EXPECTED_ENCODER)
# ## FUNKCJE
# In[9]:
def BayesFit(MODEL, DOC):
PREDICTION = MODEL.predict(DOC)
return PREDICTION
# ## PLIK DEV-0
# In[10]:
patoolib.extract_archive("dev-0/in.tsv.xz", outdir="dev-0/")
INFILE = open('dev-0/in.tsv', 'r', encoding="utf-8")
OUTFILE = open("dev-0/out.tsv", "w")
# In[11]:
ALL_DOC = INFILE.readlines()
# In[12]:
RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)
# In[13]:
for x in RESULT:
OUTFILE.write(str(x) + '\n')
# In[14]:
INFILE.close()
OUTFILE.close()
#os.remove("dev-0/in.tsv")
# ## PLIK TEST-A
# In[15]:
patoolib.extract_archive("test-A/in.tsv.xz", outdir="test-A/")
INFILE = open('test-A/in.tsv', 'r', encoding="utf-8")
OUTFILE = open("test-A/out.tsv", "w")
# In[16]:
ALL_DOC = INFILE.readlines()
# In[17]:
RESULT = BayesFit(TRAIN_MODEL, ALL_DOC)
# In[18]:
for x in RESULT:
OUTFILE.write(str(x) + '\n')
# In[19]:
INFILE.close()
OUTFILE.close()
#os.remove("test-A/in.tsv")
# In[ ]:

5152
test-A/in.tsv Normal file

File diff suppressed because one or more lines are too long

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff

289579
train/in.tsv Normal file

File diff suppressed because one or more lines are too long