Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
872a0a53b7 |
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
35
solution.py
Normal file
35
solution.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sklearn import preprocessing
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.pipeline import make_pipeline
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
import lzma
|
||||||
|
|
||||||
|
le=preprocessing.LabelEncoder()
|
||||||
|
|
||||||
|
def open_file_xz(file: str):
|
||||||
|
with lzma.open(file, mode='rt') as f:
|
||||||
|
return f.readlines()
|
||||||
|
|
||||||
|
def open_file(file: str):
|
||||||
|
with open(file) as f:
|
||||||
|
return f.readlines()
|
||||||
|
|
||||||
|
def train_model(train_in, train_exp):
|
||||||
|
train_exp = le.fit_transform(train_exp)
|
||||||
|
pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())
|
||||||
|
model=pipeline.fit(train_in, train_exp)
|
||||||
|
return model
|
||||||
|
|
||||||
|
def make_prediction(catalog: str):
|
||||||
|
train_in = open_file_xz("train/in.tsv.xz")
|
||||||
|
train_exp = open_file("train/expected.tsv")
|
||||||
|
to_be_predict = open_file_xz(catalog + "/in.tsv.xz")
|
||||||
|
|
||||||
|
model = train_model(train_in,train_exp)
|
||||||
|
|
||||||
|
prediction=model.predict(to_be_predict)
|
||||||
|
np.savetxt(catalog + "/out.tsv", prediction, fmt='%d', delimiter='\n')
|
||||||
|
|
||||||
|
make_prediction("dev-0")
|
||||||
|
make_prediction("test-A")
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user