Compare commits

...

2 Commits

Author SHA1 Message Date
Hubert Tylkowski
93adc7c664 task 9 uploaded 2021-05-31 21:01:02 +02:00
Hubert Tylkowski
eb6976bcd9 task done 2021-05-24 14:50:18 +02:00
4 changed files with 10609 additions and 0 deletions

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

51
solution.py Normal file
View File

@ -0,0 +1,51 @@
import numpy
import lzma
from sklearn.naive_bayes import MultinomialNB
from sklearn import preprocessing
from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
TEST_A = "test-A"
DEV_0 = "dev-0"
TRAIN_IN = "./train/in.tsv.xz"
TRAIN_EXPECTED = "./train/expected.tsv"
def open_file(path):
with open(path) as file:
return file.readlines()
def open_xz(path):
with lzma.open(path, 'rt') as file:
return file.readlines()
def get_model(train_in, train_expected):
label_encoder = preprocessing.LabelEncoder()
train_expected = label_encoder.fit_transform(train_expected)
pipeline = make_pipeline(TfidfVectorizer(), MultinomialNB())
model = pipeline.fit(train_in, train_expected)
return model
def predict(train_test_in_path, train_in_path, train_expected_path):
train_in = open_xz(train_in_path)
train_expected = open_file(train_expected_path)
train_test_in = open_xz(train_test_in_path + '/in.tsv.xz')
model = get_model(train_in, train_expected)
prediction = model.predict(train_test_in)
return prediction
def save_result(path, prediction):
numpy.savetxt(path + "/out.tsv", prediction, '%d')
if __name__ == '__main__':
prediction_dev_0 = predict(DEV_0, TRAIN_IN, TRAIN_EXPECTED)
prediction_test_a = predict(TEST_A, TRAIN_IN, TRAIN_EXPECTED)
save_result(DEV_0, prediction_dev_0)
save_result(TEST_A, prediction_test_a)

134
solution_2.py Normal file
View File

@ -0,0 +1,134 @@
import pandas as pd
import numpy as np
import torch
import csv
from nltk.tokenize import word_tokenize
from gensim.models import Word2Vec
import gensim.downloader
CONTENT = 'content'
ID = 'id'
LABEL = 'label'
col_names = [CONTENT, ID, LABEL]
word2vec = gensim.downloader.load('word2vec-google-news-300')
BATCH_SIZE = 10
TRAIN_IN_PATH = 'train/in.tsv.xz'
TRAIN_EXP_PATH = 'train/expected.tsv'
DEV_PATH = 'dev-0/in.tsv.xz'
TEST_PATH = 'test-A/in.tsv.xz'
DEV_OUT_PATH = './dev-0/out.tsv'
TEST_OUT_PATH = './test-A/out.tsv'
INPUT_SIZE = 300
HIDDEN_SIZE = 600
NUM_CLASSES = 1
class NeuralNetwork(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetwork, self).__init__()
self.l1 = torch.nn.Linear(input_size, hidden_size)
self.l2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.l1(x)
x = torch.relu(x)
x = self.l2(x)
x = torch.sigmoid(x)
return x
def load_set(path, col_n):
table_set = pd.read_table(path, error_bad_lines=False, quoting=csv.QUOTE_NONE, header=None, names=col_n)
return table_set
def to_lower(t_set, header):
a_set = t_set[header].str.lower()
return a_set
def tokenize(t_set):
tokenized_set = [word_tokenize(content) for content in t_set]
return tokenized_set
def word_2_vec(t_set, w2v):
c_set = [np.mean([w2v[word] for word in content if word in w2v] or [np.zeros(300)], axis=0) for content in
t_set]
return c_set
def calc_prediction(x_t_set, batch_len, t_model):
pred = []
for i in range(0, len(x_t_set), batch_len):
x_t = x_t_set[i:i + batch_len]
x_t = torch.tensor(x_t)
out = t_model(x_t.float())
prediction = (out > 0.5)
pred = pred + prediction.tolist()
return pred
def predict(p_model, batch_len, x_t_test):
t_pred = []
p_model.eval()
with torch.no_grad():
t_pred = calc_prediction(x_t_test, batch_len, p_model)
return t_pred
def train_model(model_to_train, y_t_train, x_t_train):
cri = torch.nn.BCELoss()
opt = torch.optim.SGD(model_to_train.parameters(), lr=0.01)
for epoch in range(6):
model_to_train.train()
for index in range(0, y_t_train.shape[0], BATCH_SIZE):
t_x = x_t_train[index:index + BATCH_SIZE]
t_x = torch.tensor(t_x)
t_y = y_t_train[index:index + BATCH_SIZE]
t_y = torch.tensor(t_y.astype(np.float32).to_numpy()).reshape(-1, 1)
out = model_to_train(t_x.float())
loss = cri(out, t_y)
opt.zero_grad()
loss.backward()
opt.step()
return model_to_train
t_set_features = load_set(TRAIN_IN_PATH, col_names[:2])
t_set_labels = load_set(TRAIN_EXP_PATH, col_names[2:])
dev_set = load_set(DEV_PATH, col_names[:2])
test_set = load_set(TEST_PATH, col_names[:2])
x_train = t_set_features[CONTENT].str.lower()
y_train = t_set_labels[LABEL]
x_dev = dev_set[CONTENT].str.lower()
x_test = test_set[CONTENT].str.lower()
x_train = tokenize(x_train)
x_dev = tokenize(x_dev)
x_test = tokenize(x_test)
x_train = word_2_vec(x_train, word2vec)
x_dev = word_2_vec(x_dev, word2vec)
x_test = word_2_vec(x_test, word2vec)
model = NeuralNetwork(INPUT_SIZE, HIDDEN_SIZE, NUM_CLASSES)
trained_model = train_model(model, y_train, x_train)
dev_prediction = predict(trained_model, 10, x_dev)
test_prediction = predict(trained_model, 10, x_test)
trained_model.eval()
dev_prediction = np.asarray(dev_prediction, dtype=np.int32)
test_prediction = np.asarray(test_prediction, dtype=np.int32)
dev_prediction.tofile(DEV_OUT_PATH, sep='\n')
test_prediction.tofile(TEST_OUT_PATH, sep='\n')

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff