Compare commits

...

4 Commits

Author SHA1 Message Date
michalzareba
4d15aac254 Merge remote-tracking branch 'origin/master'
# Conflicts:
#	neural-network.py
2021-05-22 17:46:35 +02:00
michalzareba
3d78363674 Add final solution 2021-05-22 17:46:18 +02:00
d6f42e9659 xx 2021-05-13 15:53:20 +02:00
c8fcf6e4df x 2021-05-11 16:06:32 +02:00
3 changed files with 6305 additions and 984 deletions

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

169
feed-forward-nn.py Normal file
View File

@ -0,0 +1,169 @@
import csv
import gensim.downloader
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from nltk import word_tokenize
# Feed forward neural network model
class FeedforwardNeuralNetModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(FeedforwardNeuralNetModel, self).__init__()
# Linear function 1: vocab_size --> 500
self.fc1 = nn.Linear(input_dim, hidden_dim)
# Non-linearity 1
self.relu1 = nn.ReLU()
# Linear function 2: 500 --> 500
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
# Non-linearity 2
self.relu2 = nn.ReLU()
# Linear function 3 (readout): 500 --> 3
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
# Linear function 1
out = self.fc1(x)
# Non-linearity 1
out = self.relu1(out)
# Non-linearity 2
out = self.relu2(out)
# Linear function 3 (readout)
out = self.fc3(out)
return torch.sigmoid(out)
col_names = ["content", "id", "label"]
# Loading dataset
train_set_features = pd.read_table(
"train/in.tsv.xz",
error_bad_lines=False,
quoting=csv.QUOTE_NONE,
header=None,
names=col_names[:2],
)
train_set_labels = pd.read_table(
"train/expected.tsv",
error_bad_lines=False,
quoting=csv.QUOTE_NONE,
header=None,
names=col_names[2:],
)
dev_set = pd.read_table(
"dev-0/in.tsv.xz",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
names=col_names[:2],
)
test_set = pd.read_table(
"test-A/in.tsv.xz",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
names=col_names[:2],
)
# Lowercase text
X_train = train_set_features["content"].str.lower()
y_train = train_set_labels["label"]
X_dev = dev_set["content"].str.lower()
X_test = test_set["content"].str.lower()
# Tokenize text with nltk
X_train = [word_tokenize(content) for content in X_train]
X_dev = [word_tokenize(content) for content in X_dev]
X_test = [word_tokenize(content) for content in X_test]
# Vectorize text
word2vec = gensim.downloader.load("word2vec-google-news-300")
X_train = [
np.mean(
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
axis=0,
)
for content in X_train
]
X_dev = [
np.mean(
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
axis=0,
)
for content in X_dev
]
X_test = [
np.mean(
[word2vec[word] for word in content if word in word2vec] or [np.zeros(300)],
axis=0,
)
for content in X_test
]
# Model config
input_dim = 300
hidden_layer = 600
output_dim = 1
batch_size = 10
epochs = 10
# Model init
model = FeedforwardNeuralNetModel(input_dim, hidden_layer, output_dim)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = torch.nn.BCELoss()
# Learning model
for epoch in range(epochs):
model.train()
for i in range(0, y_train.shape[0], batch_size):
X = X_train[i : i + batch_size]
X = torch.tensor(X)
y = y_train[i : i + batch_size]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
outputs = model(X.float())
loss = criterion(outputs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Making predictions for dev-0 & and test-A
test_prediction = []
dev_prediction = []
model.eval()
with torch.no_grad():
for i in range(0, len(X_test), batch_size):
X = X_test[i : i + batch_size]
X = torch.tensor(X)
outputs = model(X.float())
prediction = outputs > 0.5
test_prediction += prediction.tolist()
for i in range(0, len(X_dev), batch_size):
X = X_dev[i : i + batch_size]
X = torch.tensor(X)
outputs = model(X.float())
prediction = outputs > 0.5
dev_prediction += prediction.tolist()
test_prediction = np.asarray(test_prediction, dtype=np.int32)
dev_prediction = np.asarray(dev_prediction, dtype=np.int32)
test_prediction.tofile("./test-A/out.tsv", sep="\n")
dev_prediction.tofile("./dev-0/out.tsv", sep="\n")

File diff suppressed because it is too large Load Diff