Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
ded9a74adc | ||
|
59a86d7607 |
5272
dev-0/in.tsv
Normal file
5272
dev-0/in.tsv
Normal file
File diff suppressed because one or more lines are too long
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
59
fine_tuning.py
Normal file
59
fine_tuning.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import random
|
||||||
|
import torch
|
||||||
|
from transformers import (
|
||||||
|
AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
||||||
|
)
|
||||||
|
|
||||||
|
class DataWrapper(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, encodings, labels):
|
||||||
|
self.encodings = encodings
|
||||||
|
self.labels = labels
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
||||||
|
item['labels'] = torch.tensor(self.labels[idx])
|
||||||
|
return item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.labels)
|
||||||
|
|
||||||
|
def read_data(file_path):
|
||||||
|
with open(file_path) as f:
|
||||||
|
return f.readlines()
|
||||||
|
|
||||||
|
def wirte_output(file_path, data):
|
||||||
|
with open(file_path, 'w') as writer:
|
||||||
|
for result in trainer.predict(data):
|
||||||
|
writer.write(f"{str(result)}\n")
|
||||||
|
|
||||||
|
print("STEP 1 - READ DATA")
|
||||||
|
X_train = read_data('train/in.tsv')
|
||||||
|
y_train = read_data('train/expected.tsv')
|
||||||
|
X_dev = read_data('dev-0/in.tsv')
|
||||||
|
X_test = read_data('test-A/in.tsv')
|
||||||
|
|
||||||
|
print("STEP 2 - SHUFFLE")
|
||||||
|
data_train = list(zip(X_train, y_train))
|
||||||
|
data_train = random.sample(data_train, 15000)
|
||||||
|
|
||||||
|
|
||||||
|
print("STEP 3 - FINE TUNING")
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
||||||
|
|
||||||
|
train_encodings = tokenizer([text[0] for text in data_train], truncation=True, padding=True)
|
||||||
|
train_dataset = DataWrapper(train_encodings, [int(text[1]) for text in data_train])
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", num_labels=2)
|
||||||
|
args = TrainingArguments("model")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
# device = torch.device("cuda")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
print("STEP 4 - WRITE OUTPUT")
|
||||||
|
wirte_output('train/out.tsv', X_train)
|
||||||
|
wirte_output('dev-0/out.tsv', X_dev)
|
||||||
|
wirte_output('test-A/out.tsv', X_test)
|
5
geval_results.txt
Normal file
5
geval_results.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
Likelihood 0.0000
|
||||||
|
Accuracy 0.7517
|
||||||
|
F1.0 0.6119
|
||||||
|
Precision 0.6848
|
||||||
|
Recall 0.5531
|
94
log_reg.py
Normal file
94
log_reg.py
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import torch
|
||||||
|
import csv
|
||||||
|
import gensim.downloader
|
||||||
|
import torch
|
||||||
|
from nltk import word_tokenize
|
||||||
|
|
||||||
|
class NeuralNetwork(torch.nn.Module):
|
||||||
|
def __init__(self, input_size, hidden_size, num_classes):
|
||||||
|
super(NeuralNetwork, self).__init__()
|
||||||
|
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
||||||
|
self.l2 = torch.nn.Linear(hidden_size, num_classes)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.l1(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.l2(x)
|
||||||
|
x = torch.sigmoid(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
print('STEP 1 - LOAD DATA')
|
||||||
|
names = ['content', 'id', 'label']
|
||||||
|
train_data_content = pd.read_table('train/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||||
|
train_data_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[2:])
|
||||||
|
dev_data = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||||
|
test_data = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||||
|
|
||||||
|
print('STEP 2 - SET PARAMS')
|
||||||
|
hidden_size = int(input('Hidden units size: ') or '600')
|
||||||
|
epochs = int(input("Epochs: ") or '5')
|
||||||
|
batch_size = int(input("Batch size: ") or '15')
|
||||||
|
|
||||||
|
print('STEP 3 - PREPROCESSING')
|
||||||
|
# lowercase all content
|
||||||
|
X_train = train_data_content['content'].str.lower()
|
||||||
|
y_train = train_data_labels['label']
|
||||||
|
X_dev = dev_data['content'].str.lower()
|
||||||
|
X_test = test_data['content'].str.lower()
|
||||||
|
|
||||||
|
# tokenize datasets
|
||||||
|
X_train = [word_tokenize(content) for content in X_train]
|
||||||
|
X_dev = [word_tokenize(content) for content in X_dev]
|
||||||
|
X_test = [word_tokenize(content) for content in X_test]
|
||||||
|
|
||||||
|
# use Google word2vec algorithm
|
||||||
|
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
||||||
|
X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train]
|
||||||
|
X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev]
|
||||||
|
X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test]
|
||||||
|
|
||||||
|
print('STEP 4 - MODEL TRAINING')
|
||||||
|
#prepare neural model
|
||||||
|
|
||||||
|
model = NeuralNetwork(300, hidden_size, 1)
|
||||||
|
criterion = torch.nn.BCELoss()
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
||||||
|
|
||||||
|
for epoch in range(epochs):
|
||||||
|
model.train()
|
||||||
|
for i in range(0, y_train.shape[0], batch_size):
|
||||||
|
X = X_train[i:i+batch_size]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
y = y_train[i:i+batch_size]
|
||||||
|
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||||
|
outputs = model(X.float())
|
||||||
|
loss = criterion(outputs, y)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
print('STEP 5 - PREDICTION')
|
||||||
|
y_dev, y_test = [], []
|
||||||
|
model.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
for i in range(0, len(X_dev), batch_size):
|
||||||
|
X = X_dev[i:i+batch_size]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
outputs = model(X.float())
|
||||||
|
prediction = (outputs > 0.5)
|
||||||
|
y_dev += prediction.tolist()
|
||||||
|
for i in range(0, len(X_test), batch_size):
|
||||||
|
X = X_test[i:i+batch_size]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
outputs = model(X.float())
|
||||||
|
y = (outputs > 0.5)
|
||||||
|
y_test += prediction.tolist()
|
||||||
|
|
||||||
|
print('STEP 6 - EXPORT RESULTS')
|
||||||
|
# export results to tsv
|
||||||
|
y_dev = np.asarray(y_dev, dtype=np.int32)
|
||||||
|
y_test = np.asarray(y_test, dtype=np.int32)
|
||||||
|
y_dev.tofile('./dev-0/out.tsv', sep='\n')
|
||||||
|
y_test.tofile('./test-A/out.tsv', sep='\n')
|
5
output_geval_fine.txt
Normal file
5
output_geval_fine.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
Likelihood 0.0000
|
||||||
|
Accuracy 0.8253
|
||||||
|
F1.0 0.7472
|
||||||
|
Precision 0.7659
|
||||||
|
Recall 0.7294
|
5152
test-A/in.tsv
Normal file
5152
test-A/in.tsv
Normal file
File diff suppressed because one or more lines are too long
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/in.tsv
Normal file
289579
train/in.tsv
Normal file
File diff suppressed because one or more lines are too long
289579
train/out.tsv
Normal file
289579
train/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user