Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
ded9a74adc | ||
|
59a86d7607 |
5272
dev-0/in.tsv
Normal file
5272
dev-0/in.tsv
Normal file
File diff suppressed because one or more lines are too long
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
59
fine_tuning.py
Normal file
59
fine_tuning.py
Normal file
@ -0,0 +1,59 @@
|
||||
import random
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
||||
)
|
||||
|
||||
class DataWrapper(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
||||
item['labels'] = torch.tensor(self.labels[idx])
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
def read_data(file_path):
|
||||
with open(file_path) as f:
|
||||
return f.readlines()
|
||||
|
||||
def wirte_output(file_path, data):
|
||||
with open(file_path, 'w') as writer:
|
||||
for result in trainer.predict(data):
|
||||
writer.write(f"{str(result)}\n")
|
||||
|
||||
print("STEP 1 - READ DATA")
|
||||
X_train = read_data('train/in.tsv')
|
||||
y_train = read_data('train/expected.tsv')
|
||||
X_dev = read_data('dev-0/in.tsv')
|
||||
X_test = read_data('test-A/in.tsv')
|
||||
|
||||
print("STEP 2 - SHUFFLE")
|
||||
data_train = list(zip(X_train, y_train))
|
||||
data_train = random.sample(data_train, 15000)
|
||||
|
||||
|
||||
print("STEP 3 - FINE TUNING")
|
||||
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
||||
|
||||
train_encodings = tokenizer([text[0] for text in data_train], truncation=True, padding=True)
|
||||
train_dataset = DataWrapper(train_encodings, [int(text[1]) for text in data_train])
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", num_labels=2)
|
||||
args = TrainingArguments("model")
|
||||
|
||||
device = torch.device("cpu")
|
||||
# device = torch.device("cuda")
|
||||
model.to(device)
|
||||
|
||||
trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
|
||||
print("STEP 4 - WRITE OUTPUT")
|
||||
wirte_output('train/out.tsv', X_train)
|
||||
wirte_output('dev-0/out.tsv', X_dev)
|
||||
wirte_output('test-A/out.tsv', X_test)
|
5
geval_results.txt
Normal file
5
geval_results.txt
Normal file
@ -0,0 +1,5 @@
|
||||
Likelihood 0.0000
|
||||
Accuracy 0.7517
|
||||
F1.0 0.6119
|
||||
Precision 0.6848
|
||||
Recall 0.5531
|
94
log_reg.py
Normal file
94
log_reg.py
Normal file
@ -0,0 +1,94 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
import csv
|
||||
import gensim.downloader
|
||||
import torch
|
||||
from nltk import word_tokenize
|
||||
|
||||
class NeuralNetwork(torch.nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_classes):
|
||||
super(NeuralNetwork, self).__init__()
|
||||
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
||||
self.l2 = torch.nn.Linear(hidden_size, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.l1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.l2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
print('STEP 1 - LOAD DATA')
|
||||
names = ['content', 'id', 'label']
|
||||
train_data_content = pd.read_table('train/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||
train_data_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[2:])
|
||||
dev_data = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||
test_data = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=names[:2])
|
||||
|
||||
print('STEP 2 - SET PARAMS')
|
||||
hidden_size = int(input('Hidden units size: ') or '600')
|
||||
epochs = int(input("Epochs: ") or '5')
|
||||
batch_size = int(input("Batch size: ") or '15')
|
||||
|
||||
print('STEP 3 - PREPROCESSING')
|
||||
# lowercase all content
|
||||
X_train = train_data_content['content'].str.lower()
|
||||
y_train = train_data_labels['label']
|
||||
X_dev = dev_data['content'].str.lower()
|
||||
X_test = test_data['content'].str.lower()
|
||||
|
||||
# tokenize datasets
|
||||
X_train = [word_tokenize(content) for content in X_train]
|
||||
X_dev = [word_tokenize(content) for content in X_dev]
|
||||
X_test = [word_tokenize(content) for content in X_test]
|
||||
|
||||
# use Google word2vec algorithm
|
||||
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
||||
X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train]
|
||||
X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev]
|
||||
X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test]
|
||||
|
||||
print('STEP 4 - MODEL TRAINING')
|
||||
#prepare neural model
|
||||
|
||||
model = NeuralNetwork(300, hidden_size, 1)
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
for i in range(0, y_train.shape[0], batch_size):
|
||||
X = X_train[i:i+batch_size]
|
||||
X = torch.tensor(X)
|
||||
y = y_train[i:i+batch_size]
|
||||
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||
outputs = model(X.float())
|
||||
loss = criterion(outputs, y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print('STEP 5 - PREDICTION')
|
||||
y_dev, y_test = [], []
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(X_dev), batch_size):
|
||||
X = X_dev[i:i+batch_size]
|
||||
X = torch.tensor(X)
|
||||
outputs = model(X.float())
|
||||
prediction = (outputs > 0.5)
|
||||
y_dev += prediction.tolist()
|
||||
for i in range(0, len(X_test), batch_size):
|
||||
X = X_test[i:i+batch_size]
|
||||
X = torch.tensor(X)
|
||||
outputs = model(X.float())
|
||||
y = (outputs > 0.5)
|
||||
y_test += prediction.tolist()
|
||||
|
||||
print('STEP 6 - EXPORT RESULTS')
|
||||
# export results to tsv
|
||||
y_dev = np.asarray(y_dev, dtype=np.int32)
|
||||
y_test = np.asarray(y_test, dtype=np.int32)
|
||||
y_dev.tofile('./dev-0/out.tsv', sep='\n')
|
||||
y_test.tofile('./test-A/out.tsv', sep='\n')
|
5
output_geval_fine.txt
Normal file
5
output_geval_fine.txt
Normal file
@ -0,0 +1,5 @@
|
||||
Likelihood 0.0000
|
||||
Accuracy 0.8253
|
||||
F1.0 0.7472
|
||||
Precision 0.7659
|
||||
Recall 0.7294
|
5152
test-A/in.tsv
Normal file
5152
test-A/in.tsv
Normal file
File diff suppressed because one or more lines are too long
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/in.tsv
Normal file
289579
train/in.tsv
Normal file
File diff suppressed because one or more lines are too long
289579
train/out.tsv
Normal file
289579
train/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user