Compare commits
11 Commits
Author | SHA1 | Date | |
---|---|---|---|
8cf99e9f55 | |||
99eb245d6c | |||
e348d16dde | |||
fb4b0d95e3 | |||
8f410ae809 | |||
1c4f054533 | |||
e77c9e41d1 | |||
305ae96fda | |||
d40f8bfd4b | |||
|
a77bae1b00 | ||
|
69719655e6 |
6
.ipynb_checkpoints/Untitled-checkpoint.ipynb
Normal file
6
.ipynb_checkpoints/Untitled-checkpoint.ipynb
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
{
|
||||||
|
"cells": [],
|
||||||
|
"metadata": {},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
6
.ipynb_checkpoints/Untitled1-checkpoint.ipynb
Normal file
6
.ipynb_checkpoints/Untitled1-checkpoint.ipynb
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
{
|
||||||
|
"cells": [],
|
||||||
|
"metadata": {},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
6
.ipynb_checkpoints/logistic-regression-checkpoint.ipynb
Normal file
6
.ipynb_checkpoints/logistic-regression-checkpoint.ipynb
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
{
|
||||||
|
"cells": [],
|
||||||
|
"metadata": {},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
5272
dev-0/in.tsv
Normal file
5272
dev-0/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
dev-0/in.tsv.xz
BIN
dev-0/in.tsv.xz
Binary file not shown.
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
103
logistic-regression.ipynb
Normal file
103
logistic-regression.ipynb
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 34,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import torch\n",
|
||||||
|
"import gensim.downloader as gn\n",
|
||||||
|
"import csv\n",
|
||||||
|
"from nltk.tokenize import word_tokenize"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 36,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"STEP 3 - PREPROCESSING\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"names = ['content', 'id', 'label']\n",
|
||||||
|
"train_data_content = pd.read_table('train/in.tsv', error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = ['content', 'id'])\n",
|
||||||
|
"train_data_labels = pd.read_table('train/expected.tsv', error_bad_lines = False, header = None, quoting=csv.QUOTE_NONE, names = ['label'])\n",
|
||||||
|
"dev_data = pd.read_table('dev-0/in.tsv', error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = ['content', 'id'])\n",
|
||||||
|
"test_data = pd.read_table('test-A/in.tsv', error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = ['content', 'id'])\n",
|
||||||
|
"\n",
|
||||||
|
"print('STEP 3 - PREPROCESSING')\n",
|
||||||
|
"# lowercase all content\n",
|
||||||
|
"X_train = train_data_content['content'].str.lower()\n",
|
||||||
|
"y_train = train_data_labels['label']\n",
|
||||||
|
"X_dev = dev_data['content'].str.lower()\n",
|
||||||
|
"X_test = test_data['content'].str.lower()\n",
|
||||||
|
"\n",
|
||||||
|
"# tokenize datasets\n",
|
||||||
|
"X_train = [word_tokenize(content) for content in X_train]\n",
|
||||||
|
"X_dev = [word_tokenize(content) for content in X_dev]\n",
|
||||||
|
"X_test = [word_tokenize(content) for content in X_test]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 37,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[==================================================] 100.0% 1662.8/1662.8MB downloaded\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"w2v = gn.load('word2vec-google-news-300')\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
123
logistic-regression.py
Normal file
123
logistic-regression.py
Normal file
@ -0,0 +1,123 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import csv
|
||||||
|
import torch
|
||||||
|
from nltk.tokenize import word_tokenize
|
||||||
|
from gensim import downloader
|
||||||
|
|
||||||
|
FEATURES = ['content', 'id', 'label']
|
||||||
|
PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', 'test-A/in.tsv', './dev-0/out.tsv', './test-A/out.tsv']
|
||||||
|
PRE_TRAINED = 'word2vec-google-news-300'
|
||||||
|
|
||||||
|
class NeuralNetwork(torch.nn.Module):
|
||||||
|
def __init__(self, INPUT_DIM):
|
||||||
|
super(NeuralNetwork, self).__init__()
|
||||||
|
self.l1 = torch.nn.Linear(INPUT_DIM, 500)
|
||||||
|
self.l2 = torch.nn.Linear(500, 1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.l1(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.l2(x)
|
||||||
|
x = torch.sigmoid(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def get_data(FEATURES, PATHS):
|
||||||
|
x_train = pd.read_table(PATHS[0], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
|
||||||
|
y_train = pd.read_table(PATHS[1], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[2:])
|
||||||
|
x_dev = pd.read_table(PATHS[2], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
|
||||||
|
x_test = pd.read_table(PATHS[3], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
|
||||||
|
|
||||||
|
return x_train, y_train, x_dev, x_test
|
||||||
|
|
||||||
|
def preprocess(x_train, y_train, x_dev, x_test):
|
||||||
|
x_train = x_train[FEATURES[0]].str.lower()
|
||||||
|
x_dev = x_dev[FEATURES[0]].str.lower()
|
||||||
|
x_test = x_test[FEATURES[0]].str.lower()
|
||||||
|
y_train = y_train[FEATURES[2]]
|
||||||
|
|
||||||
|
return x_train, y_train, x_dev, x_test
|
||||||
|
|
||||||
|
def tokenize(x_train, x_dev, x_test):
|
||||||
|
x_train = [word_tokenize(i) for i in x_train]
|
||||||
|
x_dev = [word_tokenize(i) for i in x_dev]
|
||||||
|
x_test = [word_tokenize(i) for i in x_test]
|
||||||
|
|
||||||
|
return x_train, x_dev, x_test
|
||||||
|
|
||||||
|
def use_word2vec():
|
||||||
|
w2v = downloader.load(PRE_TRAINED)
|
||||||
|
|
||||||
|
return w2v
|
||||||
|
|
||||||
|
def document_vector(w2v, x_train, x_dev, x_test):
|
||||||
|
x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_train]
|
||||||
|
x_dev = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_dev]
|
||||||
|
x_test = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_test]
|
||||||
|
|
||||||
|
return x_train, x_dev, x_test
|
||||||
|
|
||||||
|
def basic_config():
|
||||||
|
INPUT_DIM = 300
|
||||||
|
BATCH_SIZE = 5
|
||||||
|
|
||||||
|
return INPUT_DIM, BATCH_SIZE
|
||||||
|
|
||||||
|
def init_model(INPUT_DIM):
|
||||||
|
nn_model = NeuralNetwork(INPUT_DIM)
|
||||||
|
criterion = torch.nn.BCELoss()
|
||||||
|
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
||||||
|
|
||||||
|
return nn_model, optimizer, criterion
|
||||||
|
|
||||||
|
def train(nn_model, BATCH_SIZE, criterion, optimizer, x_train, y_train):
|
||||||
|
for epoch in range(5):
|
||||||
|
nn_model.train()
|
||||||
|
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
||||||
|
X = x_train[i:i+BATCH_SIZE]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
y = y_train[i:i+BATCH_SIZE]
|
||||||
|
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||||
|
outputs = nn_model(X.float())
|
||||||
|
loss = criterion(outputs, y)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
def prediction(nn_model, BATCH_SIZE, x_dev, x_test):
|
||||||
|
y_dev, y_test = [], []
|
||||||
|
nn_model.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
for i in range(0, len(x_dev), BATCH_SIZE):
|
||||||
|
X = x_dev[i:i+BATCH_SIZE]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
outputs = nn_model(X.float())
|
||||||
|
prediction = (outputs > 0.5)
|
||||||
|
y_dev += prediction.tolist()
|
||||||
|
for i in range(0, len(x_test), BATCH_SIZE):
|
||||||
|
X = x_test[i:i+BATCH_SIZE]
|
||||||
|
X = torch.tensor(X)
|
||||||
|
outputs = nn_model(X.float())
|
||||||
|
prediction = (outputs > 0.5)
|
||||||
|
y_test += prediction.tolist()
|
||||||
|
|
||||||
|
return y_dev, y_test
|
||||||
|
|
||||||
|
def get_result(y_dev, y_test):
|
||||||
|
np.asarray(y_dev, dtype = np.int32).tofile(PATHS[4], sep='\n')
|
||||||
|
np.asarray(y_test, dtype = np.int32).tofile(PATHS[5], sep='\n')
|
||||||
|
|
||||||
|
def main():
|
||||||
|
x_train, y_train, x_dev, x_test = get_data(FEATURES, PATHS)
|
||||||
|
x_train, y_train, x_dev, x_test = preprocess(x_train, y_train, x_dev, x_test)
|
||||||
|
x_train, x_dev, x_test = tokenize(x_train, x_dev, x_test)
|
||||||
|
w2v = use_word2vec()
|
||||||
|
x_train, x_dev, x_test = document_vector(w2v, x_train, x_dev, x_test)
|
||||||
|
INPUT_DIM, BATCH_SIZE = basic_config()
|
||||||
|
nn_model, optimizer, criterion = init_model(INPUT_DIM)
|
||||||
|
train(nn_model, BATCH_SIZE, criterion, optimizer, x_train, y_train)
|
||||||
|
y_dev, y_test = prediction(nn_model, BATCH_SIZE, x_dev, x_test)
|
||||||
|
get_result(y_dev, y_test)
|
||||||
|
|
||||||
|
if _name_ == '_main_':
|
||||||
|
main()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
logs/events.out.tfevents.1624271570.POZ-PIOTRU.20712.0
Normal file
BIN
logs/events.out.tfevents.1624271570.POZ-PIOTRU.20712.0
Normal file
Binary file not shown.
BIN
logs/events.out.tfevents.1624272912.POZ-PIOTRU.4624.0
Normal file
BIN
logs/events.out.tfevents.1624272912.POZ-PIOTRU.4624.0
Normal file
Binary file not shown.
BIN
logs/events.out.tfevents.1624273023.POZ-PIOTRU.19528.0
Normal file
BIN
logs/events.out.tfevents.1624273023.POZ-PIOTRU.19528.0
Normal file
Binary file not shown.
84
roberta.py
Normal file
84
roberta.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', 'test-A/in.tsv', './dev-0/out.tsv', './test-A/out.tsv']
|
||||||
|
OUTPUT_PATHS = ['dev-0/out.tsv', 'test-A/out.tsv']
|
||||||
|
PRE_TRAINED = ['roberta-base']
|
||||||
|
|
||||||
|
def get_data(path):
|
||||||
|
data = []
|
||||||
|
with open(path, encoding='utf-8') as f:
|
||||||
|
data = f.readlines()
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
def generate_output(path, trainer, X_data):
|
||||||
|
data = []
|
||||||
|
with open(path, encoding='utf-8') as f:
|
||||||
|
for result in trainer.predict(X_data):
|
||||||
|
f.write(str(result) + '\n')
|
||||||
|
|
||||||
|
class IMDbDataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, encodings, labels):
|
||||||
|
self.encodings = encodings
|
||||||
|
self.labels = labels
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
||||||
|
item['labels'] = torch.tensor(self.labels[idx])
|
||||||
|
return item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.labels)
|
||||||
|
|
||||||
|
def prepare(data_train_X, data_train_Y):
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(PRE_TRAINED[0])
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(PRE_TRAINED[0], num_labels=2)
|
||||||
|
device = torch.device("cpu")
|
||||||
|
model.to(device)
|
||||||
|
encoded_input = tokenizer([text[0] for text in list(zip(data_train_X, data_train_Y))], truncation=True, padding=True)
|
||||||
|
train_dataset = IMDbDataset(encoded_input , [int(text[1]) for text in list(zip(data_train_X, data_train_Y))])
|
||||||
|
|
||||||
|
return train_dataset, model
|
||||||
|
|
||||||
|
def training(train_dataset, model):
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir='./results', # output directory
|
||||||
|
num_train_epochs=3, # total number of training epochs
|
||||||
|
per_device_train_batch_size=16, # batch size per device during training
|
||||||
|
per_device_eval_batch_size=64, # batch size for evaluation
|
||||||
|
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
||||||
|
weight_decay=0.01, # strength of weight decay
|
||||||
|
logging_dir='./logs', # directory for storing logs
|
||||||
|
logging_steps=10,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model, # the instantiated Transformers model to be trained
|
||||||
|
args=training_args, # training arguments, defined above
|
||||||
|
train_dataset=train_dataset, # training dataset
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
return trainer
|
||||||
|
|
||||||
|
def main():
|
||||||
|
#data
|
||||||
|
X_train = get_data(PATHS[0])
|
||||||
|
y_train = get_data(PATHS[1])
|
||||||
|
X_dev = get_data(PATHS[2])
|
||||||
|
X_test = get_data(PATHS[3])
|
||||||
|
|
||||||
|
#prepare
|
||||||
|
train_dataset, model = prepare(X_train, y_train)
|
||||||
|
|
||||||
|
#trainer
|
||||||
|
trainer = training(train_dataset, model)
|
||||||
|
|
||||||
|
#output
|
||||||
|
generate_output(OUTPUT_PATHS[0], trainer, X_dev)
|
||||||
|
generate_output(OUTPUT_PATHS[1], trainer, X_test)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
5152
test-A/in.tsv
Normal file
5152
test-A/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
test-A/in.tsv.xz
BIN
test-A/in.tsv.xz
Binary file not shown.
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
289579
train/in.tsv
Normal file
289579
train/in.tsv
Normal file
File diff suppressed because one or more lines are too long
BIN
train/in.tsv.xz
BIN
train/in.tsv.xz
Binary file not shown.
Loading…
Reference in New Issue
Block a user