Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
3e0857c6c7 | ||
|
76fffb4848 |
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
98
log-reg.py
Normal file
98
log-reg.py
Normal file
@ -0,0 +1,98 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import torch
|
||||
from nltk.tokenize import word_tokenize
|
||||
import gensim.downloader
|
||||
from csv import QUOTE_NONE
|
||||
|
||||
|
||||
print('initialization')
|
||||
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
||||
|
||||
|
||||
def get_word2vec(document):
|
||||
return np.mean([word2vec[token] for token in document if token in word2vec] or [np.zeros(300)], axis=0)
|
||||
|
||||
|
||||
class MyNeuralNetwork(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size, hidden_size, num_classes):
|
||||
super(MyNeuralNetwork, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(input_size, hidden_size)
|
||||
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
# wczytanie danych
|
||||
print('loading data')
|
||||
train_x = pd.read_table('train/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE,
|
||||
names=['content', 'id'])
|
||||
train_y = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=QUOTE_NONE,
|
||||
names=['label'])['label']
|
||||
dev_x = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE,
|
||||
names=['content', 'id'])
|
||||
test_x = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE,
|
||||
names=['content', 'id'])
|
||||
|
||||
# preprocessing danych
|
||||
print('word tokenize')
|
||||
train_x = [word_tokenize(row) for row in train_x['content'].str.lower()]
|
||||
dev_x = [word_tokenize(row) for row in dev_x['content'].str.lower()]
|
||||
test_x = [word_tokenize(row) for row in test_x['content'].str.lower()]
|
||||
|
||||
print('word2vec')
|
||||
train_x = [get_word2vec(document) for document in train_x]
|
||||
dev_x = [get_word2vec(document) for document in dev_x]
|
||||
test_x = [get_word2vec(document) for document in test_x]
|
||||
|
||||
# trenowanie
|
||||
print('model training')
|
||||
network = MyNeuralNetwork(300, 600, 1)
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(network.parameters(), lr=0.02)
|
||||
epochs = 15
|
||||
batch_size = 15
|
||||
|
||||
for epoch in range(epochs):
|
||||
network.train()
|
||||
for i in range(0, train_y.shape[0], batch_size):
|
||||
x = train_x[i:i + batch_size]
|
||||
x = torch.tensor(x)
|
||||
y = train_y[i:i + batch_size]
|
||||
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||
outputs = network(x.float())
|
||||
loss = criterion(outputs, y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# ewaluacja
|
||||
print('evaluation')
|
||||
dev_y_prediction = []
|
||||
test_y_prediction = []
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(dev_x), batch_size):
|
||||
x = dev_x[i:i + batch_size]
|
||||
x = torch.tensor(x)
|
||||
outputs = network(x.float())
|
||||
prediction = outputs > 0.5
|
||||
dev_y_prediction += prediction.tolist()
|
||||
for i in range(0, len(test_x), batch_size):
|
||||
x = test_x[i:i + batch_size]
|
||||
x = torch.tensor(x)
|
||||
outputs = network(x.float())
|
||||
prediction = outputs > 0.5
|
||||
test_y_prediction += prediction.tolist()
|
||||
|
||||
# zapisanie danych
|
||||
print('saving data')
|
||||
np.asarray(dev_y_prediction, dtype=np.int32).tofile('./dev-0/out.tsv', sep='\n')
|
||||
np.asarray(test_y_prediction, dtype=np.int32).tofile('./test-A/out.tsv', sep='\n')
|
||||
|
||||
print('done')
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user