Compare commits

...

4 Commits

Author SHA1 Message Date
MatOgr
f26ab9bdbe Script upload 2022-05-27 17:45:00 +02:00
MatOgr
81bd23dbcb 478841 results 2022-05-27 17:29:15 +02:00
MatOgr
11867437bf 478841 2022-05-10 23:14:08 +02:00
MatOgr
c3ce71c113 478841 2022-05-10 22:50:22 +02:00
4 changed files with 10615 additions and 0 deletions

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

42
run.py Normal file
View File

@ -0,0 +1,42 @@
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
# * Training data loading
with open('train/in.tsv', 'r', encoding='utf-8') as f:
x_train = pd.DataFrame(f.readlines(), columns=['text'])
y_train = pd.read_csv('train/expected.tsv', sep='\t',
names=['paranormal'], encoding='utf-8')
# *Validation data loading
with open('dev-0/in.tsv', 'r', encoding='utf-8') as f:
x_dev = pd.DataFrame(f.readlines(), columns=['text'])
# * Test data loading
with open('test-A/in.tsv', 'r', encoding='utf-8') as f:
x_test = pd.DataFrame(f.readlines(), columns=['text'])
# * Training data preparation
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, max_features=500)
x_train_vectorized = tfidf_vectorizer.fit_transform(
x_train['text'].values)
# * Model training
mnb_model = MultinomialNB().fit(x_train_vectorized, y_train.values.ravel())
# * Validation data preparation
x_dev_prepared = tfidf_vectorizer.transform(x_dev['text'].values)
# * Validation data predictions
predictions = mnb_model.predict(x_dev_prepared)
# * Validation predicitons saving
with open('dev-0/out.tsv', 'w') as f:
for pred in predictions:
f.write(f'{pred}\n')
# * Test data preparation
x_test_vectorized = tfidf_vectorizer.transform(x_test['text'].values)
# * Test data predictions
predictions = mnb_model.predict(x_test_vectorized)
# * Test predictions saving
with open('test-A/out.tsv', 'w') as f:
for pred in predictions:
f.write(f'{pred}\n')

149
run_pytorch.py Normal file
View File

@ -0,0 +1,149 @@
import torch
import numpy as np
from gensim.models import Word2Vec
import lzma
import pandas as pd
class ScepticNetwork(torch.nn.Module):
def __init__(self, features=100):
super(ScepticNetwork, self).__init__()
self.lin_1 = torch.nn.Linear(features, 500)
self.lin_2 = torch.nn.Linear(500, 1)
def forward(self, x):
x = self.lin_1(x)
x = torch.relu(x)
x = self.lin_2(x)
x = torch.sigmoid(x)
return x
def evaluate(model, X, Y, criterion, batch_size):
loss_score = 0
acc_score = 0
items_total = 0
model.eval()
for i in range(0, Y.shape[0], batch_size):
X_tens = torch.tensor(X[i:i + batch_size].astype(np.float32))
Y_tens = torch.tensor(Y[i:i + batch_size].astype(np.float32)).reshape(
-1, 1)
Y_predictions = model(X_tens)
acc_score += torch.sum((Y_predictions > 0.5) == Y_tens).item()
items_total += Y_tens.shape[0]
loss = criterion(Y_predictions, Y_tens)
loss_score += loss.item() * Y_tens.shape[0]
return (loss_score / items_total), (acc_score / items_total)
def train(model,
x_train,
y_train,
optimizer,
criterion=torch.nn.BCELoss(),
epochs=5,
batch_size=256):
for epoch in range(epochs):
loss_score = 0
acc_score = 0
items_total = 0
model.train()
for i in range(0, len(y_train), batch_size):
X_tens = torch.tensor(x_train[i:i + batch_size].astype(np.float32))
Y_tens = torch.tensor(y_train[i:i + batch_size].astype(
np.float32)).reshape(-1, 1)
Y_predictions = model(X_tens)
acc_score += torch.sum((Y_predictions > 0.5) == Y_tens).item()
items_total += Y_tens.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y_tens)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y_tens.shape[0]
print(f'Epoch {epoch+1}/{epochs}')
loss, accuracy = evaluate(model, x_train, y_train, criterion,
batch_size)
print(f'Train set\nloss = {loss}, accuracy = {accuracy}')
def flatten(t):
return [str(int(item)) for sublist in t for item in sublist]
def predict(model, data):
data = torch.tensor(data.astype(np.float32))
with torch.no_grad():
return flatten(model(data).round().tolist())
PATHS = ['train/in.tsv', 'dev-0/in.tsv', 'test-A/in.tsv']
def read_data(path, train=True):
print(f"I am reading the data from {path}...")
with open(path, 'r', encoding='utf-8') as f:
if train:
data = [line.strip().split() for line in f.readlines()]
else:
data = [line.strip() for line in f.readlines()]
print("Data loaded")
return data
def save_predictions(path, preds):
new_path = f"{path.split('/')[0]}/out.pt.tsv"
print(f"Saving predictions to {new_path}")
with open(new_path, 'w') as f:
for line in preds:
f.write(f'{line}\n')
def vectorize_data(data, vectorizer):
result = [
np.mean([
vectorizer.wv[word]
if word in vectorizer.wv else np.zeros(100, dtype=float)
for word in doc
],
axis=0) for doc in data
]
return np.array(result)
if __name__ == '__main__':
# * Load training data
data = read_data(PATHS[0])
x_train = np.array(data)
y_train = np.array(read_data('train/expected.tsv', False))
print(
f"X_data: {x_train[:5]} {type(x_train)}, y_data: {y_train[:5]} {type(y_train)}\nx shape:{x_train.shape}\ty shape: {y_train.shape}"
)
# * Vectorize data
w2v = Word2Vec(x_train, vector_size=100, min_count=2)
x_train_vec = vectorize_data(x_train, w2v)
# * Loading & training model
model = ScepticNetwork()
optimizer = torch.optim.SGD(model.parameters(), lr=0.15)
print("Now I will train the model...")
train(model, x_train_vec, y_train, epochs=50, optimizer=optimizer)
print("Training completed!\n\n")
# * Making predictions
for path in PATHS[1:]:
X = vectorize_data(read_data(path), w2v)
print(f"I will make predictions for {path}")
predictions = predict(model, X)
print(f'Saving predictions for {path}')
save_predictions(path,predictions)

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff