Compare commits

..

1 Commits

Author SHA1 Message Date
9e1568ff0e Log 2021-05-25 22:51:39 +02:00
5 changed files with 10543 additions and 0 deletions

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
geval Executable file

Binary file not shown.

5
results.txt Normal file
View File

@ -0,0 +1,5 @@
Likelihood 0.0000
Accuracy 0.7574
F1.0 0.6305
Precision 0.6840
Recall 0.5847

114
script.py Normal file
View File

@ -0,0 +1,114 @@
import gensim.downloader
from nltk.tokenize import word_tokenize
import numpy as np
import pandas as pd
import torch
word2vec = gensim.downloader.load("word2vec-google-news-300")
def get_word2vec(document):
return np.mean(
[word2vec[token] for token in document if token in word2vec] or [np.zeros(300)],
axis=0,
)
class LogNetwork(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(LogNetwork, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
train_x = pd.read_table(
"train/in.tsv.xz",
error_bad_lines=False,
header=None,
quoting=3,
usecols=["content"],
names=["content", "id"],
nrows=225000,
)
train_y = pd.read_table(
"train/expected.tsv",
error_bad_lines=False,
header=None,
quoting=3,
usecols=["label"],
names=["label"],
nrows=225000,
)
dev_x = pd.read_table(
"dev-0/in.tsv.xz",
error_bad_lines=False,
header=None,
quoting=3,
usecols=["content"],
names=["content", "id"],
)
test_x = pd.read_table(
"test-A/in.tsv.xz",
error_bad_lines=False,
header=None,
quoting=3,
usecols=["content"],
names=["content", "id"],
)
train_x = [word_tokenize(row) for row in train_x.content.str.lower()]
dev_x = [word_tokenize(row) for row in dev_x.content.str.lower()]
test_x = [word_tokenize(row) for row in test_x.content.str.lower()]
train_x = [get_word2vec(document) for document in train_x]
dev_x = [get_word2vec(document) for document in dev_x]
test_x = [get_word2vec(document) for document in test_x]
network = LogNetwork(300, 600, 1)
criterion = torch.nn.BCELoss()
optim = torch.optim.SGD(network.parameters(), lr=0.01)
epochs = 7
batch_size = 15
for _ in range(epochs):
network.train()
for i in range(0, train_y.shape[0], batch_size):
x = train_x[i : i + batch_size]
x = torch.tensor(x)
y = train_y[i : i + batch_size]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
outputs = network(x.float())
loss = criterion(outputs, y)
optim.zero_grad()
loss.backward()
optim.step()
dev_pred = []
test_pred = []
with torch.no_grad():
for i in range(0, len(dev_x), batch_size):
x = dev_x[i : i + batch_size]
x = torch.tensor(x)
outputs = network(x.float())
prediction = outputs >= 0.5
dev_pred += prediction.tolist()
for i in range(0, len(test_x), batch_size):
x = test_x[i : i + batch_size]
x = torch.tensor(x)
outputs = network(x.float())
prediction = outputs >= 0.5
test_pred += prediction.tolist()
np.asarray(dev_pred, dtype=np.int32).tofile("./dev-0/out.tsv", sep="\n")
np.asarray(test_pred, dtype=np.int32).tofile("./test-A/out.tsv", sep="\n")
print("Saved")

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff