Compare commits

..

3 Commits

Author SHA1 Message Date
42ede5e2c7 paranormal-or-skeptic - pytorch NNet 2022-05-25 23:06:35 +02:00
2fc8abbc87 predictions 2022-05-25 22:29:49 +02:00
328cb684d4 predictions 2022-05-25 21:41:24 +02:00
4 changed files with 10537 additions and 0 deletions

16
Net.py Normal file
View File

@ -0,0 +1,16 @@
import torch.nn as nn
from torch import relu, sigmoid
class NNet(nn.Module):
def __init__(self):
super(NNet, self).__init__()
self.ll1 = nn.Linear(100, 1000)
self.ll2 = nn.Linear(1000, 400)
self.ll3 = nn.Linear(400, 1)
def forward(self, x):
x = relu(self.ll1(x))
x = relu(self.ll2(x))
x = sigmoid(self.ll3(x))
return x

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

97
run.py Normal file
View File

@ -0,0 +1,97 @@
import gensim.downloader
import torch.optim as optim
import torch.nn as nn
import torch
import numpy as np
from Net import NNet
#from timeit import default_timer as timer
def read_data(folder_name):
with open(f'{folder_name}/in.tsv', encoding='utf-8') as file:
x = [line.lower().split()[:-2] for line in file.readlines()]
with open(f'{folder_name}/expected.tsv', encoding='utf-8') as file:
y = [int(line.split()[0]) for line in file.readlines()]
return x, y
def process_data(data, word2vec):
processed_data = []
for reddit in data:
words_sim = [word2vec[word] for word in reddit if word in word2vec]
processed_data.append(np.mean(words_sim or [np.zeros(100)], axis=0))
return processed_data
def predict(folder_name, model, word_vec):
with open(f'{folder_name}/in.tsv', encoding='utf-8') as file:
x_data = [line.lower().split()[:-2] for line in file.readlines()]
x_train = process_data(x_data, word_vec)
y_predictions = []
with torch.no_grad():
for i, inputs in enumerate(x_train):
inputs = torch.tensor(inputs.astype(np.float32)).to(device)
y_predicted = model(inputs)
y_predictions.append(y_predicted > 0.5)
return y_predictions
def save_predictions(folder_name, predicted_labels):
predictions = []
for pred in predicted_labels:
predictions.append(pred.int()[0].item())
with open(f"{folder_name}/out.tsv", "w", encoding="UTF-8") as file_out:
for pred in predictions:
file_out.writelines(f"{str(pred)}\n")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device) #gpu is a bit faster here
word_vectors = gensim.downloader.load("glove-wiki-gigaword-100")
x_data, y_train = read_data('train')
x_train = process_data(x_data, word_vectors)
model = NNet().to(device)
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.005) #, momentum=0.9)
for epoch in range(2):
running_loss = 0.0
correct = 0.
total = 0.
for i, (inputs, label) in enumerate(zip(x_train, y_train)):
inputs = torch.tensor(inputs.astype(np.float32)).to(device)
label = torch.tensor(np.array(label).astype(np.float32)).reshape(1).to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
y_predicted = model(inputs)
loss = criterion(y_predicted, label)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
correct += ((y_predicted > 0.5) == label).type(torch.float).sum().item()
total += label.size(0)
if i % 10000 == 9999: # print every 10000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 10000:.3f}')
print(f'Accuracy score: {100 * correct / total} %')
running_loss = 0.0
predicted = predict('dev-0', model, word_vectors)
save_predictions('dev-0', predicted)
predicted = predict('test-A', model, word_vectors)
save_predictions('test-A', predicted)

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff