{ "cells": [ { "cell_type": "code", "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "#!/usr/bin/env python\n", "# coding: utf-8\n", "import lzma\n", "from gensim.models import Word2Vec\n", "import gensim.downloader\n", "import numpy as np\n", "import pandas as pd\n", "import torch" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "X_train = lzma.open(\"train/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n", "y_train = np.array(open('train/expected.tsv').readlines())\n", "X_dev0 = lzma.open(\"dev-0/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()\n", "y_expected_dev0 = np.array(open(\"dev-0/expected.tsv\", \"r\").readlines())\n", "X_test = lzma.open(\"test-A/in.tsv.xz\", mode='rt', encoding='utf-8').readlines()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X_train = [line.split() for line in X_train]\n", "X_dev0 = [line.split() for line in X_dev0]\n", "X_test = [line.split() for line in X_test]" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "model_w2v = Word2Vec(X_train, vector_size=100, window=5, min_count=1, workers=4)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "def vectorize(model, data):\n", " return np.array([np.mean([model.wv[word] if word in model.wv.key_to_index else np.zeros(100, dtype=float) for word in doc], axis=0) for doc in data])\n", " " ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "X_train_w2v = vectorize(model_w2v, X_train)\n", "X_dev0_w2v = vectorize(model_w2v, X_dev0)\n", "X_test_w2v = vectorize(model_w2v, X_test)" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "FEATURES = 100\n", "\n", "class NeuralNetworkModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(NeuralNetworkModel, self).__init__()\n", " self.fc1 = torch.nn.Linear(FEATURES,500)\n", " self.fc2 = torch.nn.Linear(500,1)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = torch.relu(x)\n", " x = self.fc2(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 145, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "nn_model = NeuralNetworkModel()" ] }, { "cell_type": "code", "execution_count": 146, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "BATCH_SIZE = 42" ] }, { "cell_type": "code", "execution_count": 147, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "criterion = torch.nn.BCELoss()" ] }, { "cell_type": "code", "execution_count": 148, "metadata": { "pycharm": { "is_executing": true, "name": "#%%\n" } }, "outputs": [], "source": [ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "pycharm": { "is_executing": true, "name": "#%%\n" } }, "outputs": [], "source": [ "def get_loss_acc(model, X_dataset, Y_dataset):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " model.eval()\n", " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n", " X = np.array(X_dataset[i:i+BATCH_SIZE]).astype(np.float32)\n", " X = torch.tensor(X)\n", " Y = Y_dataset[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0]\n", "\n", " loss = criterion(Y_predictions, Y)\n", "\n", " loss_score += loss.item() * Y.shape[0]\n", " return (loss_score / items_total), (acc_score / items_total)" ] }, { "cell_type": "code", "execution_count": 150, "metadata": {}, "outputs": [], "source": [ "def predict(model, data):\n", " model.eval()\n", " predictions = []\n", " for x in data:\n", " X = torch.tensor(np.array(x).astype(np.float32))\n", " Y_predictions = model(X)\n", " if Y_predictions[0] > 0.5:\n", " predictions.append(\"1\")\n", " else:\n", " predictions.append(\"0\")\n", " return predictions" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "pycharm": { "is_executing": true, "name": "#%%\n" } }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.49161445487174543, 0.7499197110287693)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4990149180719994, 0.7420333839150227)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.486242138754709, 0.7533833599812141)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4960476360955079, 0.7448786039453718)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.48170865143118824, 0.7566018254086104)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.49339661830880754, 0.7448786039453718)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "3" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.47863767532834156, 0.7587877573995352)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.49210414077877457, 0.7503793626707133)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "4" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4755889592268004, 0.7613466446116604)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.49055553189223017, 0.753793626707132)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "5" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.47395927866325194, 0.7623273787118541)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4905445413022374, 0.7541729893778453)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "6" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4721670034531442, 0.7639055318237855)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4896522785377249, 0.7522761760242792)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "7" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4713666787153674, 0.7644166186083936)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4897225151384003, 0.7532245827010622)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "8" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4687599671611641, 0.7661674361745845)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4882916720620779, 0.7524658573596358)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4669961705231401, 0.767617817590364)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.48753329053272426, 0.7534142640364189)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for epoch in range(10):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " nn_model.train()\n", " for i in range(0, y_train.shape[0], BATCH_SIZE):\n", " X = X_train_w2v[i:i+BATCH_SIZE]\n", " X = torch.tensor(X)\n", " Y = y_train[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = nn_model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0]\n", "\n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", " loss_score += loss.item() * Y.shape[0]\n", "\n", " display(epoch)\n", " display(get_loss_acc(nn_model, X_train_w2v, y_train))\n", " display(get_loss_acc(nn_model, X_dev0_w2v, y_expected_dev0))" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "y_pred_dev0 = predict(nn_model, X_dev0_w2v)\n", "y_pred_test = predict(nn_model, X_test_w2v)" ] }, { "cell_type": "code", "execution_count": 153, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 158, "metadata": {}, "outputs": [], "source": [ "open('dev-0/out.tsv', 'w').writelines([i+'\\n' for i in y_pred_dev0])" ] }, { "cell_type": "code", "execution_count": 159, "metadata": {}, "outputs": [], "source": [ "open('test-A/out.tsv', 'w').writelines([i+'\\n' for i in y_pred_test])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 1 }