import pandas as pd import numpy as np import torch from nltk.tokenize import word_tokenize import gensim.downloader from csv import QUOTE_NONE print('initialization') word2vec = gensim.downloader.load('word2vec-google-news-300') def get_word2vec(document): return np.mean([word2vec[token] for token in document if token in word2vec] or [np.zeros(300)], axis=0) class MyNeuralNetwork(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(MyNeuralNetwork, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, x): x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x # wczytanie danych print('loading data') train_x = pd.read_table('train/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id']) train_y = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['label'])['label'] dev_x = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id']) test_x = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id']) # preprocessing danych print('word tokenize') train_x = [word_tokenize(row) for row in train_x['content'].str.lower()] dev_x = [word_tokenize(row) for row in dev_x['content'].str.lower()] test_x = [word_tokenize(row) for row in test_x['content'].str.lower()] print('word2vec') train_x = [get_word2vec(document) for document in train_x] dev_x = [get_word2vec(document) for document in dev_x] test_x = [get_word2vec(document) for document in test_x] # trenowanie print('model training') network = MyNeuralNetwork(300, 600, 1) criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(network.parameters(), lr=0.02) epochs = 15 batch_size = 15 for epoch in range(epochs): network.train() for i in range(0, train_y.shape[0], batch_size): x = train_x[i:i + batch_size] x = torch.tensor(x) y = train_y[i:i + batch_size] y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1) outputs = network(x.float()) loss = criterion(outputs, y) optimizer.zero_grad() loss.backward() optimizer.step() # ewaluacja print('evaluation') dev_y_prediction = [] test_y_prediction = [] with torch.no_grad(): for i in range(0, len(dev_x), batch_size): x = dev_x[i:i + batch_size] x = torch.tensor(x) outputs = network(x.float()) prediction = outputs > 0.5 dev_y_prediction += prediction.tolist() for i in range(0, len(test_x), batch_size): x = test_x[i:i + batch_size] x = torch.tensor(x) outputs = network(x.float()) prediction = outputs > 0.5 test_y_prediction += prediction.tolist() # zapisanie danych print('saving data') np.asarray(dev_y_prediction, dtype=np.int32).tofile('./dev-0/out.tsv', sep='\n') np.asarray(test_y_prediction, dtype=np.int32).tofile('./test-A/out.tsv', sep='\n') print('done')