{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5-final" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", "display_name": "Python 3.9.5 64-bit", "metadata": { "interpreter": { "hash": "ac59ebe37160ed0dfa835113d9b8498d9f09ceb179beaac4002f036b9467c963" } } } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# https://gonito.net/challenge/paranormal-or-skeptic\n", "# dane + wyniki -> https://git.wmi.amu.edu.pl/s444380/paranormal-or-skeptic-ISI-public" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import lzma\n", "import torch\n", "import numpy as np\n", "from gensim import downloader" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 10\n", "EPOCHS = 10\n", "FEATURES = 200" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "class NeuralNetworkModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(NeuralNetworkModel, self).__init__()\n", " self.fc1 = torch.nn.Linear(FEATURES, 1000)\n", " self.fc2 = torch.nn.Linear(1000, 500)\n", " self.fc3 = torch.nn.Linear(500, 1)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = torch.relu(x)\n", " x = self.fc2(x)\n", " x = torch.relu(x)\n", " x = self.fc3(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Read train files\n", "with lzma.open(\"train/in.tsv.xz\", \"rt\", encoding=\"utf-8\") as train_file:\n", " x_train = [x.strip().lower() for x in train_file.readlines()]\n", "\n", "with open(\"train/expected.tsv\", \"r\", encoding=\"utf-8\") as train_file:\n", " y_train = np.array([int(x.strip()) for x in train_file.readlines()])\n", "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "word2vec = downloader.load(\"glove-twitter-200\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]\n", " or [np.zeros(FEATURES)], axis=0) for doc in x_train]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "model = NeuralNetworkModel()\n", "\n", "criterion = torch.nn.BCELoss()\n", "optimizer = torch.optim.ASGD(model.parameters(), lr=0.05)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "0\n", "0.5444966091123856 0.7128072132302411\n", "1\n", "0.5187017436751196 0.7303153888921503\n", "2\n", "0.5117590330604093 0.7348944502191112\n", "3\n", "0.5075270808198805 0.7376916143781145\n", "4\n", "0.5043017516287736 0.7403230206610286\n", "5\n", "0.5016950109024928 0.7418977204838748\n", "6\n", "0.49942716640870777 0.7432134236253319\n", "7\n", "0.49766424133924386 0.7448606425189672\n", "8\n", "0.49617289846816215 0.745534033890579\n", "9\n", "0.49471875689137873 0.7467116054686286\n" ] } ], "source": [ "for epoch in range(EPOCHS):\n", " print(epoch)\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " for i in range(0, y_train.shape[0], BATCH_SIZE):\n", " x = x_train_w2v[i:i+BATCH_SIZE]\n", " x = torch.tensor(np.array(x).astype(np.float32))\n", " y = y_train[i:i+BATCH_SIZE]\n", " y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)\n", " y_pred = model(x)\n", " acc_score += torch.sum((y_pred > 0.5) == y).item()\n", " items_total += y.shape[0]\n", "\n", " optimizer.zero_grad()\n", " loss = criterion(y_pred, y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", " loss_score += loss.item() * y.shape[0]\n", " \n", " print((loss_score / items_total), (acc_score / items_total))" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# Read dev files\n", "with lzma.open(\"dev-0/in.tsv.xz\", \"rt\", encoding=\"utf-8\") as dev_file:\n", " x_dev = [x.strip().lower() for x in dev_file.readlines()]" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "x_dev_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]\n", " or [np.zeros(FEATURES)], axis=0) for doc in x_dev]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "y_dev = []\n", "with torch.no_grad():\n", " for i in range(0, len(x_dev_w2v), BATCH_SIZE):\n", " x = x_dev_w2v[i:i+BATCH_SIZE]\n", " x = torch.tensor(np.array(x).astype(np.float32))\n", " \n", " outputs = model(x)\n", " \n", " y = (outputs > 0.5)\n", " y_dev.extend(y)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "with open(\"dev-0/out.tsv\", \"w\", encoding=\"utf-8\") as f:\n", " f.writelines([str(y.int()[0].item()) + \"\\n\" for y in y_dev])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "# Read test files\n", "with lzma.open(\"test-A/in.tsv.xz\", \"rt\", encoding=\"utf-8\") as test_file:\n", " x_test = [x.strip().lower() for x in test_file.readlines()]" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "x_test_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]\n", " or [np.zeros(FEATURES)], axis=0) for doc in x_test]" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "y_test = []\n", "with torch.no_grad():\n", " for i in range(0, len(x_test_w2v), BATCH_SIZE):\n", " x = x_test_w2v[i:i+BATCH_SIZE]\n", " x = torch.tensor(np.array(x).astype(np.float32))\n", " \n", " outputs = model(x)\n", " \n", " y = (outputs > 0.5)\n", " y_test.extend(y)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "with open(\"test-A/out.tsv\", \"w\", encoding=\"utf-8\") as f:\n", " f.writelines([str(y.int()[0].item()) + \"\\n\" for y in y_test])" ] } ] }