import pandas as pd import numpy as np import torch from nltk.tokenize import word_tokenize import gensim.downloader as api # Wczytanie X i Y do Train oraz X do Dev i Test X_train = pd.read_table('train/in.tsv', sep='\t', error_bad_lines=False, quoting=3, header=None, names=['content', 'id'], usecols=['content']) y_train = pd.read_table('train/expected.tsv', sep='\t', error_bad_lines=False, quoting=3, header=None, names=['label']) X_dev = pd.read_table('dev-0/in.tsv', sep='\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content']) X_test = pd.read_table('test-A/in.tsv', sep='\t', error_bad_lines=False, header=None, quoting=3, names=['content', 'id'], usecols=['content']) # lowercase-ing zbiorów # https://www.datacamp.com/community/tutorials/case-conversion-python X_train = X_train.content.str.lower() X_dev = X_dev.content.str.lower() X_test = X_test.content.str.lower() y_train = y_train['label'] #Df do Series? # tokenizacja zbiorów #https://www.nltk.org/_modules/nltk/tokenize.html X_train = [word_tokenize(doc) for doc in X_train] X_dev = [word_tokenize(doc) for doc in X_dev] X_test = [word_tokenize(doc) for doc in X_test] # word2vec zgodnie z poradą Pana Jakuba # https://radimrehurek.com/gensim/auto_examples/howtos/run_downloader_api.html # https://www.kaggle.com/kstathou/word-embeddings-logistic-regression w2v = api.load('word2vec-google-news-300') def document_vector(doc): """Create document vectors by averaging word vectors. Remove out-of-vocabulary words.""" return np.mean([w2v[w] for w in doc if w in w2v] or [np.zeros(300)], axis=0) X_train = [document_vector(doc) for doc in X_train] X_dev = [document_vector(doc) for doc in X_dev] X_test = [document_vector(doc) for doc in X_test] #Sieć neuronowa z ćwiczeń 8 #https://git.wmi.amu.edu.pl/filipg/aitech-eks-pub/src/branch/master/cw/08_regresja_logistyczna.ipynb class NeuralNetwork(torch.nn.Module): def __init__(self, hidden_size): super(NeuralNetwork, self).__init__() self.l1 = torch.nn.Linear(300, hidden_size) #Korzystamy z word2vec-google-news-300 który ma zawsze na wejściu wymiar 300 self.l2 = torch.nn.Linear(hidden_size, 1) def forward(self, x): x = self.l1(x) x = torch.relu(x) x = self.l2(x) x = torch.sigmoid(x) return x model = NeuralNetwork(600) criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr = 0.1) batch_size = 15 # Trening modelu z ćwiczeń 8 #https://git.wmi.amu.edu.pl/filipg/aitech-eks-pub/src/branch/master/cw/08_regresja_logistyczna.ipynb for epoch in range(5): model.train() for i in range(0, y_train.shape[0], batch_size): X = X_train[i:i+batch_size] X = torch.tensor(X) y = y_train[i:i+batch_size] y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1,1) outputs = model(X.float()) loss = criterion(outputs, y) optimizer.zero_grad() loss.backward() optimizer.step() y_dev = [] y_test = [] #Predykcje #model.eval() will notify all your layers that you are in eval mode model.eval() #torch.no_grad() impacts the autograd engine and deactivate it. It will reduce memory usage and speed up with torch.no_grad(): for i in range(0, len(X_dev), batch_size): X = X_dev[i:i+batch_size] X = torch.tensor(X) outputs = model(X.float()) y = (outputs > 0.5) y_dev.extend(y) for i in range(0, len(X_test), batch_size): X = X_test[i:i+batch_size] X = torch.tensor(X) outputs = model(X.float()) y = (outputs > 0.5) y_test.extend(y) #Wygenerowanie plików outputowych y_dev = np.asarray(y_dev, dtype=np.int32) y_test = np.asarray(y_test, dtype=np.int32) y_dev_df = pd.DataFrame({'label':y_dev}) y_test_df = pd.DataFrame({'label':y_test}) y_dev_df.to_csv(r'dev-0/out.tsv', sep='\t', index=False, header=False) y_test_df.to_csv(r'test-A/out.tsv', sep='\t', index=False, header=False)