{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from sklearn.cluster import KMeans\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## FUNKCJE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def inertia_list(all_doc):\n", " list_inter = []\n", " K_max = int(len(all_doc)/2)\n", " while K_max > 100:\n", " K_max = int(K_max/2)\n", " K = range(1,K_max)\n", " for k in K:\n", " FitMean = KMeans(n_clusters=k).fit(doc_vectors)\n", " list_inter.append(FitMean.inertia_)\n", " return list_inter" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def BestK(list_inter):\n", " position = -10\n", " for i in range(0, len(list_inter)-1):\n", " if (int(list_inter[i]) == (int(list_inter[i+1]))):\n", " position = i\n", " if position == -10 :\n", " position = len(list_inter)-1\n", " return position" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PLIK DEV-0" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "infile = open('dev-0/in.tsv', 'r', encoding=\"utf-8\")\n", "outfile = open(\"dev-0/out.tsv\", \"w\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "all_doc = infile.readlines()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer()\n", "doc_vectors = vectorizer.fit_transform(all_doc)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "list_inter = inertia_list(all_doc)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "position = BestK(list_inter)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "FitMean = KMeans(n_clusters=position).fit_predict(doc_vectors)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "for x in FitMean:\n", " outfile.write(str(x) + '\\n')\n", "infile.close()\n", "outfile.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PLIK TEST-A" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "infile = open('test-A/in.tsv', 'r', encoding=\"utf-8\")\n", "outfile = open(\"test-A/out.tsv\", \"w\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "all_doc = infile.readlines()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer()\n", "doc_vectors = vectorizer.fit_transform(all_doc)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "list_inter = inertia_list(all_doc)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "position = BestK(list_inter)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "FitMean = KMeans(n_clusters=position).fit_predict(doc_vectors)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "for x in FitMean:\n", " outfile.write(str(x) + '\\n')\n", "infile.close()\n", "outfile.close()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }