polish-urban-legends-public/solution.py
2021-04-17 14:29:51 +02:00

38 lines
1.1 KiB
Python

from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import sklearn.metrics
from sklearn.cluster import KMeans
def preprocess(document, stopwords):
return " ".join([word for word in document.split() if word not in stopwords])
def predict(in_file, out_file, stopwords):
with open(in_file) as in_file:
documents = [preprocess(document, stopwords)
for document in in_file.readlines()]
vectorizer = TfidfVectorizer()
document_vectors = vectorizer.fit_transform(documents)
predictions = KMeans(
n_clusters=25, max_iter=1000).fit_predict(document_vectors)
with open(out_file, "w") as out_file:
for prediction in predictions:
out_file.write(str(prediction) + '\n')
def main():
with open('stopwords.txt') as stopwords_file:
stopwords = [stopword.strip()
for stopword in stopwords_file.readlines()]
predict("dev-0/in.tsv", "dev-0/out.tsv", stopwords)
predict("test-A/in.tsv", "test-A/out.tsv", stopwords)
if __name__ == '__main__':
main()