20 lines
724 B
Python
20 lines
724 B
Python
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
from sklearn.linear_model import LinearRegression
|
||
|
from stop_words import get_stop_words
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
meh = TfidfVectorizer(stop_words = get_stop_words('polish'))
|
||
|
linReg = LinearRegression()
|
||
|
colnames = ['start_date', 'end_date', 'title', 'sort_title', 'data']
|
||
|
t = pd.read_csv('test-A/in.tsv', sep = "\t", names = colnames)
|
||
|
datFin = pd.read_csv('train/train.tsv', sep = "\t", names = colnames)
|
||
|
date = (datFin['start_date'] + datFin['end_date']) / 2
|
||
|
trn = meh.fit_transform(datFin['data'])
|
||
|
linReg.fit(trn, date)
|
||
|
r = meh.transform(t['data'])
|
||
|
x = linReg.predict(r)
|
||
|
with open('test-A/out.tsv', 'w') as file:
|
||
|
for each in x:
|
||
|
file.write("%f\n" % each)
|