2022-05-18 02:04:53 +02:00
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
|
|
|
|
with open('train/train.tsv', 'r', encoding='utf8') as f:
|
|
|
|
train_data = f.readlines()
|
|
|
|
|
|
|
|
with open('train/meta.tsv', 'r', encoding='utf8') as f:
|
|
|
|
expected_years = f.readlines()
|
|
|
|
|
|
|
|
for i, expected in enumerate(expected_years):
|
|
|
|
expected_years[i] = expected.split('\t')[5]
|
|
|
|
#
|
|
|
|
vectorizer = TfidfVectorizer(token_pattern=r"\b[a-zA-Z]+\b|[0-9]{4}[\.]?[a-z]{0,3}[\.]?")
|
|
|
|
train = vectorizer.fit_transform(train_data)
|
|
|
|
model = LinearRegression()
|
|
|
|
model.fit(train, expected_years)
|
|
|
|
|
|
|
|
with open('dev-0/in.tsv', 'r', encoding='utf8') as f:
|
|
|
|
dev_0 = f.readlines()
|
|
|
|
|
|
|
|
# prediction on test1 data
|
|
|
|
dev_0 = vectorizer.transform(dev_0)
|
|
|
|
predicted_dev_0 = model.predict(dev_0)
|
|
|
|
|
|
|
|
with open('dev-0/out.tsv', 'wt') as f:
|
|
|
|
for p in predicted_dev_0:
|
|
|
|
f.write(str(p) + '\n')
|
|
|
|
|
|
|
|
with open('dev-1/in.tsv', 'r', encoding='utf8') as f:
|
|
|
|
dev_1 = f.readlines()
|
|
|
|
|
|
|
|
# prediction on test2 data
|
|
|
|
dev_1 = vectorizer.transform(dev_1)
|
|
|
|
predicted_dev_1 = model.predict(dev_1)
|
|
|
|
|
|
|
|
with open('dev-1/out.tsv', 'wt') as f:
|
|
|
|
for p in predicted_dev_1:
|
|
|
|
f.write(str(p) + '\n')
|
|
|
|
|
|
|
|
with open('test-A/in.tsv', 'r', encoding='utf8') as f:
|
|
|
|
test_A = f.readlines()
|
|
|
|
|
|
|
|
test_A = vectorizer.transform(test_A)
|
|
|
|
predicted_test_A = model.predict(test_A)
|
|
|
|
|
|
|
|
with open('test-A/out.tsv', 'wt') as f:
|
|
|
|
for p in predicted_test_A:
|
|
|
|
f.write(str(p) + '\n')
|
2022-05-18 02:08:56 +02:00
|
|
|
|
|
|
|
print("finished")
|