diff --git a/run.py b/run.py new file mode 100644 index 0000000..5df9af2 --- /dev/null +++ b/run.py @@ -0,0 +1,39 @@ +import string +import os + +import pandas as pd +import numpy as np +from sklearn.feature_extraction.text import TfidfVectorizer +from stop_words import get_stop_words +from sklearn.linear_model import LinearRegression +from scipy.sparse import vstack +from sklearn.utils import shuffle + +data_raw = pd.read_csv('retroc2/train/train.tsv', delimiter = '\t', header = None, names = ['date_from', 'date_to', 'title', 'source', 'text']) + +def preprocess(item): + to_replace = '''~!@#$%^&*()_+-=[]{};\'":?/.>,<1234567890–”’''' + for r in to_replace: + item = item.replace(r, '') + return item.lower() + + +stop_words = get_stop_words('polish') + ['aby', 'tych', 'tym', 'tyle', 'tymi', 'też'] +vectorizer = TfidfVectorizer(stop_words=stop_words, preprocessor=preprocess, max_features=30000, max_df=0.35) +tfs = vectorizer.fit_transform(data_raw.text) +data_X = vstack([tfs,tfs]) + +data_y = np.concatenate((data_raw.date_from, data_raw.date_to), axis = 0) +data_X, data_y = shuffle(data_X, data_y, random_state=42) + +clf = LinearRegression() + +clf.fit(data_X,data_y) + +import csv +for dir in ['retroc2/dev-0/', 'retroc2/dev-1/', 'retroc2/test-A/']: + test_raw = pd.read_csv(dir+'in.tsv', delimiter = '\t', header = None, names = ['text'],quoting=csv.QUOTE_NONE) + vectorized = vectorizer.transform(test_raw.text) + X_test = vectorized.toarray() + y_predicted = clf.predict(X_test) + np.savetxt(dir+"out.tsv", y_predicted, delimiter="\t") \ No newline at end of file