Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
e992724707 |
20000
dev-0/out.tsv
Normal file
20000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
11563
dev-1/out.tsv
Normal file
11563
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
45
result.py
Normal file
45
result.py
Normal file
@ -0,0 +1,45 @@
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from decimal import Decimal
|
||||
import numpy as np
|
||||
import lzma
|
||||
import pandas as pd
|
||||
import sys
|
||||
if sys.version_info[0] < 3:
|
||||
from StringIO import StringIO
|
||||
else:
|
||||
from io import StringIO
|
||||
|
||||
def openXZ(path):
|
||||
with lzma.open(path, mode='rt') as f:
|
||||
return f.readlines()
|
||||
|
||||
def readFile(path):
|
||||
with open(path) as source:
|
||||
return source.readlines()
|
||||
|
||||
def toArr(a):
|
||||
return [x.split("\t") for x in a]
|
||||
|
||||
def getLinearRegresion(dataPath):
|
||||
inPath = dataPath + "/in.tsv"
|
||||
outPath = dataPath + "/out.tsv"
|
||||
tmpAr = toArr(readFile(inPath))
|
||||
inDf = pd.DataFrame(data=tmpAr)
|
||||
dataVec = vectorizer.transform(inDf[0])
|
||||
evaluate = lg.predict(dataVec)
|
||||
with open(outPath, 'w') as file:
|
||||
for e in evaluate:
|
||||
file.write("%f\n" % e)
|
||||
|
||||
vectorizer = TfidfVectorizer()
|
||||
lg = LinearRegression()
|
||||
tmp = toArr(openXZ("./retroc2/train/train.tsv.xz"))
|
||||
train = pd.DataFrame(data=tmp)
|
||||
train = train.astype({0: np.number, 1: np.number})
|
||||
dateMean = (train[0] + train[1]) / 2
|
||||
trainVec = vectorizer.fit_transform(train[4])
|
||||
lg.fit(trainVec, dateMean)
|
||||
getLinearRegresion("./retroc2/dev-0")
|
||||
getLinearRegresion("./retroc2/dev-1")
|
||||
getLinearRegresion("./retroc2/test-A")
|
14220
test-A/out.tsv
Normal file
14220
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user