Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
ee39a6ffd5 | ||
|
78ae1c52a8 | ||
|
9dfe8fe3b5 | ||
|
a2d5d926d0 |
20000
dev-0/out.tsv
Normal file
20000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
29
main.py
Normal file
29
main.py
Normal file
@ -0,0 +1,29 @@
|
||||
import csv
|
||||
import pandas as pd
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from stop_words import get_stop_words
|
||||
|
||||
col_names = ['start_date', 'end_date', 'title', 'source', 'content']
|
||||
|
||||
train_set = pd.read_table('train/train.tsv.xz', error_bad_lines=False, header=None, names=col_names)
|
||||
dev_set = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, names=col_names[4:], quoting=csv.QUOTE_NONE,)
|
||||
test_set = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, names=col_names[4:], quoting=csv.QUOTE_NONE,)
|
||||
|
||||
X_train = train_set['content']
|
||||
y_train = (train_set['start_date'] + train_set['end_date']) / 2
|
||||
|
||||
X_dev = dev_set['content']
|
||||
X_test = test_set['content']
|
||||
|
||||
print('Trenowanie modelu...')
|
||||
model = make_pipeline(TfidfVectorizer(stop_words=get_stop_words('polish')), LinearRegression())
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
print('Predykcje...')
|
||||
dev_prediction = model.predict(X_dev)
|
||||
test_prediction = model.predict(X_test)
|
||||
|
||||
dev_prediction.tofile('./dev-0/out.tsv', sep='\n')
|
||||
test_prediction.tofile('./test-A/out.tsv', sep='\n')
|
14220
test-A/out.tsv
Normal file
14220
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user