Compare commits
16 Commits
Author | SHA1 | Date | |
---|---|---|---|
1b803cf24e | |||
b16fab206e | |||
b0f937e53e | |||
e2950edac7 | |||
e3d0d2ac06 | |||
a566846eda | |||
825092b0a8 | |||
179b150f10 | |||
e0630161e7 | |||
142af2ddec | |||
c85a694955 | |||
510135f5ae | |||
4e71bc526a | |||
a8273ecd11 | |||
|
14fbbecf94 | ||
|
5389bd1d5b |
167
.ipynb_checkpoints/retroc2-checkpoint.ipynb
Normal file
167
.ipynb_checkpoints/retroc2-checkpoint.ipynb
Normal file
@ -0,0 +1,167 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "greenhouse-technician",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sklearn\n",
|
||||
"import pandas as pd\n",
|
||||
"from gzip import open as open_gz\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"from sklearn.metrics import mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "acoustic-dividend",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict_year(x, path_out, model):\n",
|
||||
" results = model.predict(x)\n",
|
||||
" with open(path_out, 'wt') as file:\n",
|
||||
" for r in results:\n",
|
||||
" file.write(str(r) + '\\n') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "senior-harassment",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train/train.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" train = pd.read_csv(file, sep='\\t', names=['Date1', 'Date2', 'Title', 'Author', 'Text'])\n",
|
||||
" \n",
|
||||
"#train = train[0:10000]\n",
|
||||
"train_x = train['Text']\n",
|
||||
"train['Date'] = (train['Date1'].astype(float) + train['Date2'].astype(float))/2\n",
|
||||
"train_y=train['Date1']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "polyphonic-coach",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||||
" ('linearregression', LinearRegression())])"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||||
"model.fit(train_x, train_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "varying-wright",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-0/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev0 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev0 = x_dev0[0] \n",
|
||||
"x_dev0[19999] = 'nie jest'\n",
|
||||
"x_dev0[20000] = 'nie wiem'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "frozen-ticket",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-1/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev1 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev1 = x_dev1[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "8e3a18db-f966-45e4-b881-4b336f188055",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_test = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_test = x_test[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "traditional-amount",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#y_dev = pd.read_csv('dev-0/out.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev = y_dev[0]\n",
|
||||
"#y_dev_exp = pd.read_csv('dev-0/expected.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev_exp = y_dev_exp[0]\n",
|
||||
"#RMSE_dev = mean_squared_error(y_dev_exp, y_dev) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "close-clinton",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"predict_year(x_dev0, 'dev-0/out.tsv', model)\n",
|
||||
"predict_year(x_dev1,'dev-1/out.tsv', model)\n",
|
||||
"predict_year(x_test,'test-A/out.tsv', model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "official-sweet",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
167
.ipynb_checkpoints/run-checkpoint.py
Normal file
167
.ipynb_checkpoints/run-checkpoint.py
Normal file
@ -0,0 +1,167 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "greenhouse-technician",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sklearn\n",
|
||||
"import pandas as pd\n",
|
||||
"from gzip import open as open_gz\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"from sklearn.metrics import mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "acoustic-dividend",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict_year(x, path_out, model):\n",
|
||||
" results = model.predict(x)\n",
|
||||
" with open(path_out, 'wt') as file:\n",
|
||||
" for r in results:\n",
|
||||
" file.write(str(r) + '\\n') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "senior-harassment",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train/train.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" train = pd.read_csv(file, sep='\\t', names=['Date1', 'Date2', 'Title', 'Author', 'Text'])\n",
|
||||
" \n",
|
||||
"#train = train[0:10000]\n",
|
||||
"train_x = train['Text']\n",
|
||||
"train['Date'] = (train['Date1'].astype(float) + train['Date2'].astype(float))/2\n",
|
||||
"train_y=train['Date1']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "polyphonic-coach",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||||
" ('linearregression', LinearRegression())])"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||||
"model.fit(train_x, train_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "varying-wright",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-0/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev0 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev0 = x_dev0[0] \n",
|
||||
"x_dev0[19999] = 'nie jest'\n",
|
||||
"x_dev0[20000] = 'nie wiem'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "frozen-ticket",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-1/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev1 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev1 = x_dev1[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "8e3a18db-f966-45e4-b881-4b336f188055",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_test = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_test = x_test[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "traditional-amount",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#y_dev = pd.read_csv('dev-0/out.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev = y_dev[0]\n",
|
||||
"#y_dev_exp = pd.read_csv('dev-0/expected.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev_exp = y_dev_exp[0]\n",
|
||||
"#RMSE_dev = mean_squared_error(y_dev_exp, y_dev) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "close-clinton",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"predict_year(x_dev0, 'dev-0/out.tsv', model)\n",
|
||||
"predict_year(x_dev1,'dev-1/out.tsv', model)\n",
|
||||
"predict_year(x_test,'test-A/out.tsv', model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "official-sweet",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
20000
dev-0/out.tsv
Normal file
20000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
11563
dev-1/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
11563
dev-1/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
11563
dev-1/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
11563
dev-1/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
File diff suppressed because one or more lines are too long
11563
dev-1/out.tsv
Normal file
11563
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
167
retroc2.ipynb
Normal file
167
retroc2.ipynb
Normal file
@ -0,0 +1,167 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "greenhouse-technician",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sklearn\n",
|
||||
"import pandas as pd\n",
|
||||
"from gzip import open as open_gz\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"from sklearn.metrics import mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "acoustic-dividend",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict_year(x, path_out, model):\n",
|
||||
" results = model.predict(x)\n",
|
||||
" with open(path_out, 'wt') as file:\n",
|
||||
" for r in results:\n",
|
||||
" file.write(str(r) + '\\n') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "senior-harassment",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train/train.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" train = pd.read_csv(file, sep='\\t', names=['Date1', 'Date2', 'Title', 'Author', 'Text'])\n",
|
||||
" \n",
|
||||
"#train = train[0:10000]\n",
|
||||
"train_x = train['Text']\n",
|
||||
"train['Date'] = (train['Date1'].astype(float) + train['Date2'].astype(float))/2\n",
|
||||
"train_y=train['Date1']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "polyphonic-coach",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||||
" ('linearregression', LinearRegression())])"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||||
"model.fit(train_x, train_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "varying-wright",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-0/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev0 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev0 = x_dev0[0] \n",
|
||||
"x_dev0[19999] = 'nie jest'\n",
|
||||
"x_dev0[20000] = 'nie wiem'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "frozen-ticket",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('dev-1/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_dev1 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_dev1 = x_dev1[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "8e3a18db-f966-45e4-b881-4b336f188055",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" x_test = pd.read_csv(file, header=None, sep='\\t')\n",
|
||||
"x_test = x_test[0] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "traditional-amount",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#y_dev = pd.read_csv('dev-0/out.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev = y_dev[0]\n",
|
||||
"#y_dev_exp = pd.read_csv('dev-0/expected.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev_exp = y_dev_exp[0]\n",
|
||||
"#RMSE_dev = mean_squared_error(y_dev_exp, y_dev) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "close-clinton",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"predict_year(x_dev0, 'dev-0/out.tsv', model)\n",
|
||||
"predict_year(x_dev1,'dev-1/out.tsv', model)\n",
|
||||
"predict_year(x_test,'test-A/out.tsv', model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "official-sweet",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
159
run.ipynb
Normal file
159
run.ipynb
Normal file
@ -0,0 +1,159 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "greenhouse-technician",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sklearn\n",
|
||||
"import pandas as pd\n",
|
||||
"from gzip import open as open_gz\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"from sklearn.metrics import mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "acoustic-dividend",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict_year(x, path_out, model):\n",
|
||||
" results = model.predict(x)\n",
|
||||
" with open(path_out, 'wt') as file:\n",
|
||||
" for r in results:\n",
|
||||
" file.write(str(r) + '\\n') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "78c79a98-8309-4c1c-b27d-faad2ee7a2af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def read_file(filename):\n",
|
||||
" result = []\n",
|
||||
" with open(filename, 'r', encoding=\"utf-8\") as file:\n",
|
||||
" for line in file:\n",
|
||||
" text = line.split(\"\\t\")[0].strip()\n",
|
||||
" result.append(text)\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "senior-harassment",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train/train.tsv', 'r', encoding='utf8') as file:\n",
|
||||
" train = pd.read_csv(file, sep='\\t', names=['Begin', 'End', 'Title', 'Author', 'Text'])\n",
|
||||
" \n",
|
||||
"train = train[0:12000]\n",
|
||||
"train_x = train['Text']\n",
|
||||
"#train['Date'] = (train['Date1'].astype(float) + train['Date2'].astype(float))/2\n",
|
||||
"train_y = train['Begin']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "polyphonic-coach",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||||
" ('linearregression', LinearRegression())])"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||||
"model.fit(train_x, train_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "varying-wright",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x_dev_0 = read_file('dev-0/in.tsv')\n",
|
||||
"predict_year(x_dev_0, 'dev-0/out.tsv', model)\n",
|
||||
"x_dev_1 = read_file('dev-1/in.tsv')\n",
|
||||
"predict_year(x_dev_1,'dev-1/out.tsv', model)\n",
|
||||
"x_test = read_file('test-A/in.tsv')\n",
|
||||
"predict_year(x_test,'test-A/out.tsv', model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "traditional-amount",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#y_dev = pd.read_csv('dev-0/out.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev = y_dev[0]\n",
|
||||
"#y_dev_exp = pd.read_csv('dev-0/expected.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||||
"#y_dev_exp = y_dev_exp[0]\n",
|
||||
"#RMSE_dev = mean_squared_error(y_dev_exp, y_dev) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "close-clinton",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "official-sweet",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
41
run.py
Normal file
41
run.py
Normal file
@ -0,0 +1,41 @@
|
||||
import os
|
||||
import sklearn
|
||||
import pandas as pd
|
||||
from gzip import open as open_gz
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
def predict_year(x, path_out, model):
|
||||
results = model.predict(x)
|
||||
with open(path_out, 'wt') as file:
|
||||
for r in results:
|
||||
file.write(str(r) + '\n')
|
||||
|
||||
def read_file(filename):
|
||||
result = []
|
||||
with open(filename, 'r', encoding="utf-8") as file:
|
||||
for line in file:
|
||||
text = line.split("\t")[0].strip()
|
||||
result.append(text)
|
||||
return result
|
||||
|
||||
with open('train/train.tsv', 'r', encoding='utf8') as file:
|
||||
train = pd.read_csv(file, sep='\t', names=['Start', 'End', 'Title', 'Author', 'Text'])
|
||||
|
||||
train = train[0:12000]
|
||||
train_x = train['Text']
|
||||
#train['Date'] = (train['Start'].astype(float) + train['End'].astype(float))/2
|
||||
train_y = train['Start']
|
||||
|
||||
model = make_pipeline(TfidfVectorizer(), LinearRegression())
|
||||
model.fit(train_x, train_y)
|
||||
|
||||
x_dev_0 = read_file('dev-0/in.tsv')
|
||||
predict_year(x_dev_0, 'dev-0/out.tsv', model)
|
||||
x_dev_1 = read_file('dev-1/in.tsv')
|
||||
predict_year(x_dev_1,'dev-1/out.tsv', model)
|
||||
x_test = read_file('test-A/in.tsv')
|
||||
predict_year(x_test,'test-A/out.tsv', model)
|
||||
|
14220
test-A/out.tsv
Normal file
14220
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
107471
train/train.tsv
Normal file
107471
train/train.tsv
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user