retroc2/run.py
2021-05-19 14:08:42 +02:00

39 lines
1.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import string
import os
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from stop_words import get_stop_words
from sklearn.linear_model import LinearRegression
from scipy.sparse import vstack
from sklearn.utils import shuffle
data_raw = pd.read_csv('retroc2/train/train.tsv', delimiter = '\t', header = None, names = ['date_from', 'date_to', 'title', 'source', 'text'])
def preprocess(item):
to_replace = '''~!@#$%^&*()_+-=[]{};\'":?/.>,<1234567890'''
for r in to_replace:
item = item.replace(r, '')
return item.lower()
stop_words = get_stop_words('polish') + ['aby', 'tych', 'tym', 'tyle', 'tymi', 'też']
vectorizer = TfidfVectorizer(stop_words=stop_words, preprocessor=preprocess, max_features=30000, max_df=0.35)
tfs = vectorizer.fit_transform(data_raw.text)
data_X = vstack([tfs,tfs])
data_y = np.concatenate((data_raw.date_from, data_raw.date_to), axis = 0)
data_X, data_y = shuffle(data_X, data_y, random_state=42)
clf = LinearRegression()
clf.fit(data_X,data_y)
import csv
for dir in ['retroc2/dev-0/', 'retroc2/dev-1/', 'retroc2/test-A/']:
test_raw = pd.read_csv(dir+'in.tsv', delimiter = '\t', header = None, names = ['text'],quoting=csv.QUOTE_NONE)
vectorized = vectorizer.transform(test_raw.text)
X_test = vectorized.toarray()
y_predicted = clf.predict(X_test)
np.savetxt(dir+"out.tsv", y_predicted, delimiter="\t")