49 lines
1.2 KiB
Python
49 lines
1.2 KiB
Python
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import gzip
|
||
|
import os
|
||
|
import sys
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
from sklearn.naive_bayes import MultinomialNB
|
||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
from sklearn import metrics
|
||
|
|
||
|
IN_FILE_NAME = "in.tsv"
|
||
|
OUT_FILE_NAME = "out.tsv"
|
||
|
|
||
|
|
||
|
def main(dirname):
|
||
|
in_path = os.path.join(dirname, IN_FILE_NAME)
|
||
|
if not os.path.exists(in_path):
|
||
|
raise Exception(f"Path {in_path} does not exist!")
|
||
|
|
||
|
input = pd.read_table(in_path,
|
||
|
error_bad_lines=False, header=None)
|
||
|
|
||
|
X_train = []
|
||
|
y_train = []
|
||
|
|
||
|
with gzip.open('train/train.tsv.gz', 'r') as f:
|
||
|
for l in f:
|
||
|
line = l.decode('UTF-8').replace("\n", "").split("\t")
|
||
|
y_train.append(int(line[0]))
|
||
|
X_train.append(str(line[1:]))
|
||
|
|
||
|
X_train = np.asarray(X_train)
|
||
|
y_train = np.asarray(y_train)
|
||
|
|
||
|
X = input[0].values
|
||
|
|
||
|
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||
|
model.fit(X_train, y_train)
|
||
|
|
||
|
pred = model.predict(X)
|
||
|
|
||
|
pred.tofile(os.path.join(dirname, OUT_FILE_NAME), sep='\n')
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if len(sys.argv) < 2:
|
||
|
raise Exception("Name of working dir not specified!")
|
||
|
main(sys.argv[1])
|