sport-text-classification-b.../run.py

50 lines
1011 B
Python
Raw Normal View History

2022-05-10 23:56:56 +02:00
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score
df = pd.read_csv("train/train.tsv", sep="\t", header=None, error_bad_lines=False)
2022-05-11 01:02:31 +02:00
df = df.head(1000)
2022-05-11 00:59:27 +02:00
2022-05-10 23:56:56 +02:00
dev_x = pd.read_csv("dev-0/in.tsv", sep="\t", header=None, error_bad_lines=False)
2022-05-11 00:59:27 +02:00
with open('test-A/in.tsv', 'r', encoding='utf8') as file:
test = file.readlines()
test = pd.Series(test)
2022-05-10 23:56:56 +02:00
x = df[1]
y = df[0]
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
model.fit(x,y)
pred_dev = model.predict(dev_x[0])
2022-05-11 00:59:27 +02:00
pred_dev = pd.Series(pred_dev)
2022-05-10 23:56:56 +02:00
2022-05-11 00:59:27 +02:00
with open('dev-0/out.tsv', 'wt') as file:
2022-05-10 23:56:56 +02:00
for pred in pred_dev:
2022-05-11 00:59:27 +02:00
file.write(str(pred)+'\n')
pred_test = model.predict(test)
pred_test = pd.Series(pred_test)
pred_test = pred_test.astype('int')
2022-05-10 23:56:56 +02:00
2022-05-11 00:59:27 +02:00
with open('test-A/out.tsv', 'wt') as file:
for pred in pred_test:
file.write(str(pred)+'\n')
2022-05-11 01:02:31 +02:00