This commit is contained in:
Adi 2022-05-10 23:56:56 +02:00
parent 9cb2fb2612
commit 8d0c0507e9
11 changed files with 130985 additions and 0 deletions

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,33 @@
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score
df = pd.read_csv("train/train.tsv", sep="\t", header=None, error_bad_lines=False)
dev_x = pd.read_csv("dev-0/in.tsv", sep="\t", header=None, error_bad_lines=False)
test_x = pd.read_csv("test-A/in.tsv", sep="\t", header=None, error_bad_lines=False)
x = df[1]
y = df[0]
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
model.fit(x,y)
pred_dev = model.predict(dev_x[0])
pred_test = model.predict(test_x[0])
with open('dev-0/out.tsv', 'wt') as f:
for pred in pred_dev:
f.write(str(pred)+'\n')
with open('test-A/out.tsv', 'wt') as f:
for pred in pred_test:
f.write(str(pred)+'\n')

88
bayes.ipynb Normal file
View File

@ -0,0 +1,88 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 13,
"id": "ce420679-f5aa-4c83-a912-3c4afa982d7e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\Users\\Adrian\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
"\n",
"\n",
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
"b'Skipping line 25706: expected 2 fields, saw 3\\nSkipping line 58881: expected 2 fields, saw 3\\nSkipping line 73761: expected 2 fields, saw 3\\n'\n",
"b'Skipping line 1983: expected 1 fields, saw 2\\nSkipping line 5199: expected 1 fields, saw 2\\n'\n"
]
}
],
"source": [
"import pandas as pd\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.naive_bayes import MultinomialNB\n",
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"\n",
"\n",
"df = pd.read_csv(\"train/train.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
"dev_x = pd.read_csv(\"dev-0/in.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
"test_x = pd.read_csv(\"test-A/in.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
"\n",
"x = df[1]\n",
"y = df[0]\n",
"\n",
"model = make_pipeline(TfidfVectorizer(), MultinomialNB())\n",
"model.fit(x,y)\n",
"\n",
"pred_dev = model.predict(dev_x[0])\n",
"pred_test = model.predict(test_x[0])\n",
"\n",
"\n",
"with open('dev-0/out.tsv', 'wt') as f:\n",
" for pred in pred_dev:\n",
" f.write(str(pred)+'\\n')\n",
" \n",
"with open('test-A/out.tsv', 'wt') as f:\n",
" for pred in pred_test:\n",
" f.write(str(pred)+'\\n')\n",
"\n",
"\n",
" \n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e2a9ef0-6da0-4934-8099-378d859ae04e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

5452
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

33
run.py Normal file
View File

@ -0,0 +1,33 @@
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score
df = pd.read_csv("train/train.tsv", sep="\t", header=None, error_bad_lines=False)
dev_x = pd.read_csv("dev-0/in.tsv", sep="\t", header=None, error_bad_lines=False)
test_x = pd.read_csv("test-A/in.tsv", sep="\t", header=None, error_bad_lines=False)
x = df[1]
y = df[0]
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
model.fit(x,y)
pred_dev = model.predict(dev_x[0])
pred_test = model.predict(test_x[0])
with open('dev-0/out.tsv', 'wt') as f:
for pred in pred_dev:
f.write(str(pred)+'\n')
with open('test-A/out.tsv', 'wt') as f:
for pred in pred_test:
f.write(str(pred)+'\n')

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

5445
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff

98132
train/train.tsv Normal file

File diff suppressed because it is too large Load Diff