Compare commits

...

1 Commits

Author SHA1 Message Date
Zofia Galla
1cc364e2b4 Add script and predictions 2021-05-12 22:10:35 +02:00
3 changed files with 10932 additions and 0 deletions

5452
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

33
run.py Normal file
View File

@ -0,0 +1,33 @@
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
data_raw = pd.read_csv('train/train.tsv', delimiter = '\t', header = None,usecols=[0, 1], names = ['y', 'X'])
import string
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from stop_words import get_stop_words
def preprocess(item):
to_replace = '''~!@#$%^&*()_+-=[]{};\'":?/.>,<1234567890'''
for r in to_replace:
item = item.replace(r, '')
return item.lower()
stop_words = get_stop_words('polish') + ['aby', 'tych', 'tym', 'tyle', 'tymi', 'też']
vectorizer = TfidfVectorizer(stop_words=stop_words, preprocessor=preprocess)
tfs = vectorizer.fit_transform(data_raw.X)
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(tfs,data_raw.y)
for dir in ['dev-0/', 'test-A/']:
test_raw = pd.read_csv(dir+'in.tsv', delimiter = '\t', header = None,usecols=[0], names = ['X'])
X_test = vectorizer.transform(test_raw.X)
y_predicted = clf.predict(X_test)
np.savetxt(dir+"out.tsv", y_predicted, delimiter="\t")

5447
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff