Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
7203bb3594 | ||
|
d4b396f3be | ||
|
7ea61e7e1f | ||
|
9ccc657af6 |
45
bayes2.py
Normal file
45
bayes2.py
Normal file
@ -0,0 +1,45 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import gzip
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn import metrics
|
||||
|
||||
# Read data
|
||||
dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None)
|
||||
test = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None)
|
||||
test_expected = pd.read_table(
|
||||
'dev-0/expected.tsv', error_bad_lines=False, header=None)
|
||||
|
||||
X_train = []
|
||||
y_train = []
|
||||
|
||||
with gzip.open('train/train.tsv.gz', 'r') as f:
|
||||
for l in f:
|
||||
line = l.decode('UTF-8').replace("\n", "").split("\t")
|
||||
y_train.append(int(line[0]))
|
||||
X_train.append(str(line[1:]))
|
||||
|
||||
# Convert to unified types
|
||||
X_train = np.asarray(X_train)
|
||||
y_train = np.asarray(y_train)
|
||||
|
||||
X_dev = dev[0].values
|
||||
X_test = test[0].values
|
||||
|
||||
# Create model
|
||||
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
# Predict
|
||||
dev_p = model.predict(X_dev)
|
||||
test_p = model.predict(X_test)
|
||||
|
||||
# Accuracy
|
||||
score = metrics.accuracy_score(test_expected, dev_p)
|
||||
print("Accuracy: %0.3f" % score)
|
||||
|
||||
# Save to files
|
||||
dev_p.tofile('./dev-0/out.tsv', sep='\n')
|
||||
test_p.tofile('./test-A/out.tsv', sep='\n')
|
5452
dev-0/out.tsv
Normal file
5452
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5445
test-A/out.tsv
Normal file
5445
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user