Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
511acc7aa7 | ||
|
86940a2dd9 |
5452
dev-0/out.tsv
Normal file
5452
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
47
main.py
Normal file
47
main.py
Normal file
@ -0,0 +1,47 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import gzip
|
||||
import os
|
||||
import sys
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
|
||||
IN_FILE_NAME = "in.tsv"
|
||||
OUT_FILE_NAME = "out.tsv"
|
||||
|
||||
|
||||
def main(dirname):
|
||||
in_path = os.path.join(dirname, IN_FILE_NAME)
|
||||
if not os.path.exists(in_path):
|
||||
raise Exception(f"Path {in_path} does not exist!")
|
||||
|
||||
input = pd.read_table(in_path,
|
||||
error_bad_lines=False, header=None)
|
||||
|
||||
X_train = []
|
||||
y_train = []
|
||||
|
||||
with gzip.open('train/train.tsv.gz', 'r') as f:
|
||||
for l in f:
|
||||
line = l.decode('UTF-8').replace("\n", "").split("\t")
|
||||
y_train.append(int(line[0]))
|
||||
X_train.append(str(line[1:]))
|
||||
|
||||
X_train = np.asarray(X_train)
|
||||
y_train = np.asarray(y_train)
|
||||
|
||||
X = input[0].values
|
||||
|
||||
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
pred = model.predict(X)
|
||||
|
||||
pred.tofile(os.path.join(dirname, OUT_FILE_NAME), sep='\n')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) < 2:
|
||||
raise Exception("Name of working dir not specified!")
|
||||
main(sys.argv[1])
|
5445
test-A/out.tsv
Normal file
5445
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user