Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
97572efbcf | ||
|
6c3ca75b83 | ||
|
dc2a76c237 | ||
|
8d0c0507e9 |
143
.ipynb_checkpoints/bayes-checkpoint.ipynb
Normal file
143
.ipynb_checkpoints/bayes-checkpoint.ipynb
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"id": "ce420679-f5aa-4c83-a912-3c4afa982d7e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"D:\\Users\\Adrian\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
|
||||||
|
"b'Skipping line 25706: expected 2 fields, saw 3\\nSkipping line 58881: expected 2 fields, saw 3\\nSkipping line 73761: expected 2 fields, saw 3\\n'\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||||
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||||
|
"from sklearn.pipeline import make_pipeline\n",
|
||||||
|
"from sklearn.metrics import accuracy_score\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"df = pd.read_csv(\"train/train.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
||||||
|
"df = df.head(1000)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"dev_x = pd.read_csv(\"dev-0/in.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||||
|
" test = file.readlines()\n",
|
||||||
|
"test = pd.Series(test)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"x = df[1]\n",
|
||||||
|
"y = df[0]\n",
|
||||||
|
"\n",
|
||||||
|
"model = make_pipeline(TfidfVectorizer(), MultinomialNB())\n",
|
||||||
|
"model.fit(x,y)\n",
|
||||||
|
"\n",
|
||||||
|
"pred_dev = model.predict(dev_x[0])\n",
|
||||||
|
"pred_dev = pd.Series(pred_dev)\n",
|
||||||
|
"\n",
|
||||||
|
"with open('dev-0/out.tsv', 'wt') as file:\n",
|
||||||
|
" for pred in pred_dev:\n",
|
||||||
|
" file.write(str(pred)+'\\n')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"pred_test = model.predict(test)\n",
|
||||||
|
"pred_test = pd.Series(pred_test)\n",
|
||||||
|
"pred_test = pred_test.astype('int')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" \n",
|
||||||
|
"with open('test-A/out.tsv', 'wt') as file:\n",
|
||||||
|
" for pred in pred_test:\n",
|
||||||
|
" file.write(str(pred)+'\\n')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" \n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"id": "3e2a9ef0-6da0-4934-8099-378d859ae04e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" 0\n",
|
||||||
|
"0 ATP Sztokholm: Juergen Zopp wykorzystał szansę...\n",
|
||||||
|
"1 Krowicki z reprezentacją kobiet aż do igrzysk ...\n",
|
||||||
|
"2 Wielki powrót Łukasza Kubota Odradza się zawsz...\n",
|
||||||
|
"3 Marcel Hirscher wygrał ostatni slalom gigant m...\n",
|
||||||
|
"4 Polki do Czarnogóry z pełnią zaangażowania. Sy...\n",
|
||||||
|
"... ...\n",
|
||||||
|
"5440 Biało-czerwona siła w Falun. Oni będą reprezen...\n",
|
||||||
|
"5441 Finał WTA Tokio na żywo: Woźniacka - Osaka LIV...\n",
|
||||||
|
"5442 Oni zapisali się w annałach. Hubert Hurkacz 15...\n",
|
||||||
|
"5443 Poprawia się stan Nikiego Laudy. Austriak może...\n",
|
||||||
|
"5444 Liga Mistrzów. Zabójcza końcówka Interu Mediol...\n",
|
||||||
|
"\n",
|
||||||
|
"[5445 rows x 1 columns]\n",
|
||||||
|
"0 ATP Sztokholm: Juergen Zopp wykorzystał szansę...\n",
|
||||||
|
"1 Krowicki z reprezentacją kobiet aż do igrzysk ...\n",
|
||||||
|
"2 Wielki powrót Łukasza Kubota Odradza się zawsz...\n",
|
||||||
|
"3 Marcel Hirscher wygrał ostatni slalom gigant m...\n",
|
||||||
|
"4 Polki do Czarnogóry z pełnią zaangażowania. Sy...\n",
|
||||||
|
" ... \n",
|
||||||
|
"5442 Biało-czerwona siła w Falun. Oni będą reprezen...\n",
|
||||||
|
"5443 Finał WTA Tokio na żywo: Woźniacka - Osaka LIV...\n",
|
||||||
|
"5444 Oni zapisali się w annałach. Hubert Hurkacz 15...\n",
|
||||||
|
"5445 Poprawia się stan Nikiego Laudy. Austriak może...\n",
|
||||||
|
"5446 Liga Mistrzów. Zabójcza końcówka Interu Mediol...\n",
|
||||||
|
"Length: 5447, dtype: object\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(test)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"print(Xtest)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
49
.ipynb_checkpoints/run-checkpoint.py
Normal file
49
.ipynb_checkpoints/run-checkpoint.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.pipeline import make_pipeline
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
df = pd.read_csv("train/train.tsv", sep="\t", header=None, error_bad_lines=False)
|
||||||
|
df = df.head(1000)
|
||||||
|
|
||||||
|
|
||||||
|
dev_x = pd.read_csv("dev-0/in.tsv", sep="\t", header=None, error_bad_lines=False)
|
||||||
|
|
||||||
|
|
||||||
|
with open('test-A/in.tsv', 'r', encoding='utf8') as file:
|
||||||
|
test = file.readlines()
|
||||||
|
test = pd.Series(test)
|
||||||
|
|
||||||
|
|
||||||
|
x = df[1]
|
||||||
|
y = df[0]
|
||||||
|
|
||||||
|
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||||
|
model.fit(x,y)
|
||||||
|
|
||||||
|
pred_dev = model.predict(dev_x[0])
|
||||||
|
pred_dev = pd.Series(pred_dev)
|
||||||
|
|
||||||
|
with open('dev-0/out.tsv', 'wt') as file:
|
||||||
|
for pred in pred_dev:
|
||||||
|
file.write(str(pred)+'\n')
|
||||||
|
|
||||||
|
|
||||||
|
pred_test = model.predict(test)
|
||||||
|
pred_test = pd.Series(pred_test)
|
||||||
|
pred_test = pred_test.astype('int')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open('test-A/out.tsv', 'wt') as file:
|
||||||
|
for pred in pred_test:
|
||||||
|
file.write(str(pred)+'\n')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
95
bayes.ipynb
Normal file
95
bayes.ipynb
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"id": "ce420679-f5aa-4c83-a912-3c4afa982d7e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"D:\\Users\\Adrian\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
|
||||||
|
"b'Skipping line 25706: expected 2 fields, saw 3\\nSkipping line 58881: expected 2 fields, saw 3\\nSkipping line 73761: expected 2 fields, saw 3\\n'\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||||
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||||
|
"from sklearn.pipeline import make_pipeline\n",
|
||||||
|
"from sklearn.metrics import accuracy_score\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"df = pd.read_csv(\"train/train.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"dev_x = pd.read_csv(\"dev-0/in.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||||||
|
" test = file.readlines()\n",
|
||||||
|
"test = pd.Series(test)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"x = df[1]\n",
|
||||||
|
"y = df[0]\n",
|
||||||
|
"\n",
|
||||||
|
"model = make_pipeline(TfidfVectorizer(), MultinomialNB())\n",
|
||||||
|
"model.fit(x,y)\n",
|
||||||
|
"\n",
|
||||||
|
"pred_dev = model.predict(dev_x[0])\n",
|
||||||
|
"pred_dev = pd.Series(pred_dev)\n",
|
||||||
|
"\n",
|
||||||
|
"with open('dev-0/out.tsv', 'wt') as file:\n",
|
||||||
|
" for pred in pred_dev:\n",
|
||||||
|
" file.write(str(pred)+'\\n')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"pred_test = model.predict(test)\n",
|
||||||
|
"pred_test = pd.Series(pred_test)\n",
|
||||||
|
"pred_test = pred_test.astype('int')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" \n",
|
||||||
|
"with open('test-A/out.tsv', 'wt') as file:\n",
|
||||||
|
" for pred in pred_test:\n",
|
||||||
|
" file.write(str(pred)+'\\n')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" \n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
5452
dev-0/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
5452
dev-0/.ipynb_checkpoints/expected-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5452
dev-0/.ipynb_checkpoints/out-checkpoint.tsv
Normal file
5452
dev-0/.ipynb_checkpoints/out-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5452
dev-0/out.tsv
Normal file
5452
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
49
run.py
Normal file
49
run.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.pipeline import make_pipeline
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
df = pd.read_csv("train/train.tsv", sep="\t", header=None, error_bad_lines=False)
|
||||||
|
df = df.head(1000)
|
||||||
|
|
||||||
|
|
||||||
|
dev_x = pd.read_csv("dev-0/in.tsv", sep="\t", header=None, error_bad_lines=False)
|
||||||
|
|
||||||
|
|
||||||
|
with open('test-A/in.tsv', 'r', encoding='utf8') as file:
|
||||||
|
test = file.readlines()
|
||||||
|
test = pd.Series(test)
|
||||||
|
|
||||||
|
|
||||||
|
x = df[1]
|
||||||
|
y = df[0]
|
||||||
|
|
||||||
|
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||||
|
model.fit(x,y)
|
||||||
|
|
||||||
|
pred_dev = model.predict(dev_x[0])
|
||||||
|
pred_dev = pd.Series(pred_dev)
|
||||||
|
|
||||||
|
with open('dev-0/out.tsv', 'wt') as file:
|
||||||
|
for pred in pred_dev:
|
||||||
|
file.write(str(pred)+'\n')
|
||||||
|
|
||||||
|
|
||||||
|
pred_test = model.predict(test)
|
||||||
|
pred_test = pd.Series(pred_test)
|
||||||
|
pred_test = pred_test.astype('int')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open('test-A/out.tsv', 'wt') as file:
|
||||||
|
for pred in pred_test:
|
||||||
|
file.write(str(pred)+'\n')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
5447
test-A/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
5447
test-A/.ipynb_checkpoints/in-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5447
test-A/.ipynb_checkpoints/out-checkpoint.tsv
Normal file
5447
test-A/.ipynb_checkpoints/out-checkpoint.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5447
test-A/out.tsv
Normal file
5447
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
98132
train/train.tsv
Normal file
98132
train/train.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user