Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
3529b9ebf1 | |||
5ae7c95f2c | |||
a16904d4cf |
40
bayes2.py
Normal file
40
bayes2.py
Normal file
@ -0,0 +1,40 @@
|
||||
import gzip
|
||||
import io
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
def read_data_gz(baseUrl):
|
||||
f = gzip.open(baseUrl,'r')
|
||||
data_unzip = f.read()
|
||||
data = pd.read_table(io.StringIO(data_unzip.decode('utf-8')), error_bad_lines=False, header= None)
|
||||
return data
|
||||
|
||||
baseUrl = '/home/przemek/ekstrakcja/sport-text-classification-ball-ISI-public/'
|
||||
data = read_data_gz(baseUrl + 'train/train.tsv.gz')
|
||||
|
||||
y_train = data[0].values
|
||||
x_train = data[1].values
|
||||
|
||||
model = make_pipeline(TfidfVectorizer(), MultinomialNB())
|
||||
model.fit(x_train, y_train)
|
||||
|
||||
# dev-0
|
||||
x_dev = pd.read_table(baseUrl + 'dev-0/in.tsv', error_bad_lines=False, header= None)
|
||||
x_dev = x_dev[0].values
|
||||
|
||||
y_pred = model.predict(x_dev)
|
||||
y_pred.tofile(baseUrl + 'dev-0/out.tsv', sep='\n')
|
||||
# --------------
|
||||
|
||||
# test-A
|
||||
x_testA = pd.read_table(baseUrl + '/test-A/in.tsv', error_bad_lines=False, header= None)
|
||||
x_testA= x_testA[0].values
|
||||
|
||||
y_predA = model.predict(x_testA)
|
||||
y_predA.tofile(baseUrl + 'test-A/out.tsv', sep='\n')
|
||||
# --------------
|
5452
dev-0/out.tsv
Normal file
5452
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5452
dev-0/out2.tsv
Normal file
5452
dev-0/out2.tsv
Normal file
File diff suppressed because it is too large
Load Diff
119
neural.py
Normal file
119
neural.py
Normal file
@ -0,0 +1,119 @@
|
||||
import gensim
|
||||
import nltk
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import io
|
||||
import gzip
|
||||
import torch
|
||||
|
||||
# wget http://publications.it.p.lodz.pl/2016/word_embeddings/pl-embeddings-cbow.txt
|
||||
|
||||
|
||||
def read_data_gz(baseUrl):
|
||||
f = gzip.open(baseUrl,'r')
|
||||
data_unzip = f.read()
|
||||
data = pd.read_table(io.StringIO(data_unzip.decode('utf-8')), error_bad_lines=False, header= None)
|
||||
return data
|
||||
|
||||
def preprocess(data):
|
||||
data_tokenize = [nltk.word_tokenize(x) for x in data]
|
||||
|
||||
for doc in data_tokenize:
|
||||
i = 0
|
||||
while i < len(doc):
|
||||
if doc[i].isalpha():
|
||||
doc[i] = doc[i].lower()
|
||||
else:
|
||||
del doc[i]
|
||||
i += 1
|
||||
return data_tokenize
|
||||
|
||||
class NeuralNetworkModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(NeuralNetworkModel, self).__init__()
|
||||
self.fc1 = torch.nn.Linear(100,200)
|
||||
self.fc2 = torch.nn.Linear(200,1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
||||
data_train = read_data_gz('train/train.tsv.gz')
|
||||
data_dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header= None)
|
||||
data_test = pd.read_table('test-A/in.tsv', error_bad_lines=False, header= None)
|
||||
|
||||
model = gensim.models.KeyedVectors.load_word2vec_format('pl-embeddings-cbow.txt', binary=False)
|
||||
|
||||
y_train = data_train[0].values
|
||||
x_train = data_train[1].values
|
||||
x_dev = data_dev[0].values
|
||||
x_test = data_test[0].values
|
||||
|
||||
x_train_tokenize = preprocess(x_train)
|
||||
x_dev_tokenize = preprocess(x_dev)
|
||||
x_test_tokenize = preprocess(x_test)
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
x_train_vectors = [np.mean([model[word] for word in content if word in model] or [np.zeros(100)], axis=0) for content in x_train_tokenize]
|
||||
x_train_vectors = np.array(x_train_vectors)
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
x_dev_vectors= [np.mean([model[word] for word in content if word in model] or [np.zeros(100)], axis=0) for content in x_dev_tokenize]
|
||||
x_dev_vectors = np.array(x_dev_vectors, dtype=np.float32)
|
||||
x_dev_tensor = torch.tensor(x_dev_vectors.astype(np.float32))
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
x_test_vectors= [np.mean([model[word] for word in content if word in model] or [np.zeros(100)], axis=0) for content in x_test_tokenize]
|
||||
x_test_vectors = np.array(x_test_vectors, dtype=np.float32)
|
||||
x_test_tensor = torch.tensor(x_test_vectors.astype(np.float32))
|
||||
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
model_nn = NeuralNetworkModel()
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(model_nn.parameters(), lr=0.01)
|
||||
|
||||
batch_size = 10
|
||||
print('Trenowanie modelu...')
|
||||
|
||||
for epoch in range(6):
|
||||
loss_score = 0
|
||||
acc_score = 0
|
||||
items_total = 0
|
||||
model_nn.train()
|
||||
for i in range(0, y_train.shape[0], batch_size):
|
||||
X = x_train_vectors[i:i+batch_size]
|
||||
X = torch.tensor(X.astype(np.float32))
|
||||
Y = y_train[i:i+batch_size]
|
||||
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||||
|
||||
Y_predictions = model_nn(X)
|
||||
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||||
items_total += Y.shape[0]
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions, Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
loss_score += loss.item() * Y.shape[0]
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
ypred = model_nn(x_dev_tensor)
|
||||
ypred = ypred.cpu().detach().numpy()
|
||||
ypred = (ypred > 0.5)
|
||||
ypred = np.asarray(ypred, dtype=np.int32)
|
||||
ypred.tofile('dev-0/out.tsv', sep='\n')
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------------------------------
|
||||
ypredtest = model_nn(x_test_tensor)
|
||||
ypredtest = ypredtest.cpu().detach().numpy()
|
||||
ypredtest = (ypredtest > 0.5)
|
||||
ypredtest = np.asarray(ypredtest, dtype=np.int32)
|
||||
ypredtest.tofile('test-A/out.tsv', sep='\n')
|
5445
test-A/out.tsv
Normal file
5445
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
5445
test-A/out2.tsv
Normal file
5445
test-A/out2.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user