{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "a8bcddf9-596c-4493-bf2a-8e32255115ce", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import sklearn\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "code", "execution_count": 2, "id": "da067d47-0543-48b3-bdf4-844061f827c9", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "D:\\Programy\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n", "\n", "\n", " exec(code_obj, self.user_global_ns, self.user_ns)\n", "b'Skipping line 25706: expected 2 fields, saw 3\\nSkipping line 58881: expected 2 fields, saw 3\\nSkipping line 73761: expected 2 fields, saw 3\\n'\n" ] } ], "source": [ "train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n", "train = train.head(2000)" ] }, { "cell_type": "code", "execution_count": 3, "id": "94390d90-898c-42df-8482-0e1b8a3ea706", "metadata": {}, "outputs": [], "source": [ "x_train = train[1]\n", "y_train = train[0]" ] }, { "cell_type": "code", "execution_count": 4, "id": "df870ce3-c258-4de0-bbda-f5d71a53163c", "metadata": {}, "outputs": [], "source": [ "x_dev = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t', error_bad_lines=False)\n", "x_dev = x_dev[0]\n", "y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t', error_bad_lines=False)" ] }, { "cell_type": "code", "execution_count": 5, "id": "ce5621d9-655a-46d7-b235-8638daac733e", "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer()" ] }, { "cell_type": "code", "execution_count": 6, "id": "bca4dc07-fdcd-4ae5-8f24-584a3cda3b79", "metadata": {}, "outputs": [], "source": [ "x_train = vectorizer.fit_transform(x_train)\n", "x_dev = vectorizer.transform(x_dev)" ] }, { "cell_type": "code", "execution_count": 7, "id": "96840a5e-bfb9-4fae-a5f9-7acc0d7e4c53", "metadata": {}, "outputs": [], "source": [ "gnb = GaussianNB()" ] }, { "cell_type": "code", "execution_count": 8, "id": "aed08803-9aef-43e2-8ee2-1d79458b49ac", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GaussianNB()" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gnb.fit(x_train.toarray(), y_train)" ] }, { "cell_type": "code", "execution_count": 9, "id": "7461bb8d-3b3d-4164-9d47-a62b73dc0e36", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.9418561995597946\n" ] } ], "source": [ "dev_predicted = gnb.predict(x_dev.toarray())\n", "\n", "with open('dev-0/out.tsv', 'wt') as f:\n", " for i in dev_predicted:\n", " f.write(str(i)+'\\n')\n", "\n", "dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n", "dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n", "print(accuracy_score(dev_out, dev_expected))" ] }, { "cell_type": "code", "execution_count": 10, "id": "2e18bdbe-6d06-42e3-b952-0d5e7bc60325", "metadata": {}, "outputs": [], "source": [ "with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:\n", " x_test = f.readlines()\n", " \n", "x_test = pd.Series(x_test)\n", "x_test = vectorizer.transform(x_test)\n", "\n", "test_predicted = gnb.predict(x_test.toarray())\n", "\n", "with open('test-A/out.tsv', 'wt') as f:\n", " for i in test_predicted:\n", " f.write(str(i)+'\\n')" ] }, { "cell_type": "code", "execution_count": 11, "id": "9463e664-5f74-4a96-8959-03eb224715e7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook run.ipynb to script\n", "[NbConvertApp] Writing 1502 bytes to run.py\n" ] } ], "source": [ "!jupyter nbconvert --to script run.ipynb" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }