sport-text-classification-b.../run.py
2022-05-11 00:52:19 +02:00

91 lines
1.5 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import sklearn
from sklearn.naive_bayes import GaussianNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
# In[2]:
train = pd.read_csv('train/train.tsv', header=None, sep='\t', error_bad_lines=False)
train = train.head(2000)
# In[3]:
x_train = train[1]
y_train = train[0]
# In[4]:
x_dev = pd.read_csv('dev-0/in.tsv', header=None, sep='\t', error_bad_lines=False)
x_dev = x_dev[0]
y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t', error_bad_lines=False)
# In[5]:
vectorizer = TfidfVectorizer()
# In[6]:
x_train = vectorizer.fit_transform(x_train)
x_dev = vectorizer.transform(x_dev)
# In[7]:
gnb = GaussianNB()
# In[8]:
gnb.fit(x_train.toarray(), y_train)
# In[9]:
dev_predicted = gnb.predict(x_dev.toarray())
with open('dev-0/out.tsv', 'wt') as f:
for i in dev_predicted:
f.write(str(i)+'\n')
dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\t')
dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\t')
print(accuracy_score(dev_out, dev_expected))
# In[10]:
with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:
x_test = f.readlines()
x_test = pd.Series(x_test)
x_test = vectorizer.transform(x_test)
test_predicted = gnb.predict(x_test.toarray())
with open('test-A/out.tsv', 'wt') as f:
for i in test_predicted:
f.write(str(i)+'\n')