96 lines
2.5 KiB
Plaintext
96 lines
2.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"id": "ce420679-f5aa-4c83-a912-3c4afa982d7e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"D:\\Users\\Adrian\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
|
|
"\n",
|
|
"\n",
|
|
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
|
|
"b'Skipping line 25706: expected 2 fields, saw 3\\nSkipping line 58881: expected 2 fields, saw 3\\nSkipping line 73761: expected 2 fields, saw 3\\n'\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
|
"from sklearn.pipeline import make_pipeline\n",
|
|
"from sklearn.metrics import accuracy_score\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"df = pd.read_csv(\"train/train.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"dev_x = pd.read_csv(\"dev-0/in.tsv\", sep=\"\\t\", header=None, error_bad_lines=False)\n",
|
|
"\n",
|
|
"\n",
|
|
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
|
" test = file.readlines()\n",
|
|
"test = pd.Series(test)\n",
|
|
"\n",
|
|
"\n",
|
|
"x = df[1]\n",
|
|
"y = df[0]\n",
|
|
"\n",
|
|
"model = make_pipeline(TfidfVectorizer(), MultinomialNB())\n",
|
|
"model.fit(x,y)\n",
|
|
"\n",
|
|
"pred_dev = model.predict(dev_x[0])\n",
|
|
"pred_dev = pd.Series(pred_dev)\n",
|
|
"\n",
|
|
"with open('dev-0/out.tsv', 'wt') as file:\n",
|
|
" for pred in pred_dev:\n",
|
|
" file.write(str(pred)+'\\n')\n",
|
|
"\n",
|
|
"\n",
|
|
"pred_test = model.predict(test)\n",
|
|
"pred_test = pd.Series(pred_test)\n",
|
|
"pred_test = pred_test.astype('int')\n",
|
|
"\n",
|
|
"\n",
|
|
" \n",
|
|
"with open('test-A/out.tsv', 'wt') as file:\n",
|
|
" for pred in pred_test:\n",
|
|
" file.write(str(pred)+'\\n')\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
" \n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|