add rnn attention
This commit is contained in:
parent
311683235d
commit
0f409ae23b
5
pytorch12.py
Normal file → Executable file
5
pytorch12.py
Normal file → Executable file
@ -9,6 +9,7 @@ from torch import nn, optim
|
||||
nb_of_char_codes = 128 + 2
|
||||
SOS_token_id = 128 # start of sentence
|
||||
EOS_token_id = 129 # end of sentence
|
||||
MAX_LENGTH = 20
|
||||
|
||||
hidden_size = 32
|
||||
step = 200
|
||||
@ -72,7 +73,7 @@ class DecoderRNN(nn.Module):
|
||||
encoder = EncoderRNN(nb_of_char_codes, hidden_size).to(device)
|
||||
decoder = DecoderRNN(hidden_size, nb_of_char_codes).to(device)
|
||||
criterion = nn.NLLLoss().to(device)
|
||||
optimizer = optim.Adam((list(encoder.parameters()) + list(decoder.parameters())))
|
||||
optimizer = optim.Adam((list(encoder.parameters()) + list(decoder.parameters())))
|
||||
|
||||
counter = 0
|
||||
losses = []
|
||||
@ -83,7 +84,7 @@ for s,t in char_source():
|
||||
decoder.zero_grad()
|
||||
x = torch.tensor(s, dtype=torch.long, device=device)
|
||||
encoder_hidden = encoder.initHidden()
|
||||
encoder_output = torch.zeros(hidden_size, hidden_size, device=device)
|
||||
encoder_output = torch.zeros(MAX_LENGTH, hidden_size, device=device)
|
||||
for i in range(x.shape[0]):
|
||||
output, encoder_hidden = encoder(x[i].unsqueeze(0).unsqueeze(0), encoder_hidden)
|
||||
encoder_output[i] = output[0,0]
|
||||
|
136
pytorch13.py
Executable file
136
pytorch13.py
Executable file
@ -0,0 +1,136 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
# https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
|
||||
|
||||
import sys
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
|
||||
nb_of_char_codes = 128 + 2
|
||||
SOS_token_id = 128 # start of sentence
|
||||
EOS_token_id = 129 # end of sentence
|
||||
MAX_LENGTH = 20
|
||||
|
||||
hidden_size = 32
|
||||
step = 200
|
||||
|
||||
device = torch.device('cpu')
|
||||
|
||||
f = open('eng-fra.txt')
|
||||
def char_source():
|
||||
for line in f:
|
||||
s, t = line.rstrip('\n').split('\t')
|
||||
s_list = []
|
||||
t_list = []
|
||||
|
||||
for c in s:
|
||||
c_code = ord(c)
|
||||
if c_code < nb_of_char_codes:
|
||||
s_list.append(ord(c))
|
||||
|
||||
for c in t:
|
||||
c_code = ord(c)
|
||||
if c_code < nb_of_char_codes:
|
||||
t_list.append(ord(c))
|
||||
|
||||
yield s_list, t_list
|
||||
|
||||
class EncoderRNN(nn.Module):
|
||||
def __init__(self, input_size, hidden_size):
|
||||
super(EncoderRNN, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
self.embedding = nn.Embedding(input_size, hidden_size)
|
||||
self.gru = nn.GRU(hidden_size, hidden_size)
|
||||
|
||||
def forward(self, input, hidden):
|
||||
embedded = self.embedding(input)
|
||||
output = embedded
|
||||
output, hidden = self.gru(output, hidden)
|
||||
return output, hidden
|
||||
|
||||
def initHidden(self):
|
||||
return torch.zeros(1,1, self.hidden_size, device=device)
|
||||
|
||||
class DecoderRNN(nn.Module):
|
||||
def __init__(self, hidden_size, output_size, max_length=MAX_LENGTH):
|
||||
super(DecoderRNN, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
self.embedding = nn.Embedding(output_size, hidden_size)
|
||||
self.gru = nn.GRU(hidden_size, hidden_size)
|
||||
self.out = nn.Linear(hidden_size, output_size)
|
||||
self.softmax = nn.LogSoftmax(dim=1)
|
||||
|
||||
|
||||
self.attn = nn.Linear(self.hidden_size * 2, max_length)
|
||||
self.attn_combine = nn.Linear(hidden_size * 2, hidden_size)
|
||||
|
||||
def forward(self, input, hidden, encoder_output):
|
||||
output = self.embedding(input)
|
||||
|
||||
|
||||
attn_weights = torch.nn.functional.softmax(self.attn(torch.cat((output[0], hidden[0]), 1)), dim=1)
|
||||
attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_output.unsqueeze(0))
|
||||
output = torch.cat((output[0], attn_applied[0]), 1)
|
||||
output = self.attn_combine(output).unsqueeze(0)
|
||||
|
||||
|
||||
|
||||
output = torch.nn.functional.relu(output)
|
||||
output, hidden = self.gru(output, hidden)
|
||||
output = self.softmax(self.out(output[0]))
|
||||
return output, hidden
|
||||
|
||||
|
||||
encoder = EncoderRNN(nb_of_char_codes, hidden_size).to(device)
|
||||
decoder = DecoderRNN(hidden_size, nb_of_char_codes).to(device)
|
||||
criterion = nn.NLLLoss().to(device)
|
||||
optimizer = optim.Adam((list(encoder.parameters()) + list(decoder.parameters())))
|
||||
|
||||
counter = 0
|
||||
losses = []
|
||||
|
||||
for s,t in char_source():
|
||||
counter += 1
|
||||
encoder.zero_grad()
|
||||
decoder.zero_grad()
|
||||
x = torch.tensor(s, dtype=torch.long, device=device)
|
||||
encoder_hidden = encoder.initHidden()
|
||||
encoder_output = torch.zeros(MAX_LENGTH, hidden_size, device=device)
|
||||
for i in range(x.shape[0]):
|
||||
output, encoder_hidden = encoder(x[i].unsqueeze(0).unsqueeze(0), encoder_hidden)
|
||||
encoder_output[i] = output[0,0]
|
||||
|
||||
decoder_hidden = encoder_hidden
|
||||
|
||||
decoder_input = torch.tensor([[SOS_token_id]], device=device)
|
||||
|
||||
t.append(EOS_token_id)
|
||||
y = torch.tensor(t, dtype=torch.long, device=device)
|
||||
loss = 0
|
||||
output_string = ''
|
||||
for di in range(y.shape[0]):
|
||||
decoder_output, decoder_hidden = decoder(
|
||||
decoder_input, decoder_hidden, encoder_output)
|
||||
topv, topi = decoder_output.topk(1)
|
||||
decoder_input = topi.detach() # detach from history as input
|
||||
|
||||
output_string += chr(topi)
|
||||
loss += criterion(decoder_output, y[di].unsqueeze(0))
|
||||
if chr(topi) == EOS_token_id:
|
||||
break
|
||||
|
||||
losses.append(loss.item())
|
||||
if counter % step == 0:
|
||||
# print(counter, end='\t')
|
||||
avg_loss = sum(losses)/len(losses)
|
||||
print(f"{counter}: {avg_loss}")
|
||||
losses = []
|
||||
print('IN :\t', ''.join([chr(a) for a in s]))
|
||||
print('EXP:\t', ''.join([chr(a) for a in t]))
|
||||
print('OUT:\t', output_string)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
Loading…
Reference in New Issue
Block a user