{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Notebook bazuje na \n", "# https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/3%20-%20Faster%20Sentiment%20Analysis.ipynb" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.core.display import display, HTML\n", "display(HTML(\"\"))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting package metadata (current_repodata.json): done\n", "Solving environment: done\n", "\n", "\n", "==> WARNING: A newer version of conda exists. <==\n", " current version: 4.8.3\n", " latest version: 4.9.2\n", "\n", "Please update conda by running\n", "\n", " $ conda update -n base -c defaults conda\n", "\n", "\n", "\n", "# All requested packages already installed.\n", "\n", "Collecting package metadata (current_repodata.json): done\n", "Solving environment: done\n", "\n", "\n", "==> WARNING: A newer version of conda exists. <==\n", " current version: 4.8.3\n", " latest version: 4.9.2\n", "\n", "Please update conda by running\n", "\n", " $ conda update -n base -c defaults conda\n", "\n", "\n", "\n", "# All requested packages already installed.\n", "\n", "Requirement already satisfied: en_core_web_sm==2.3.1 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz#egg=en_core_web_sm==2.3.1 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (2.3.1)\n", "Requirement already satisfied: spacy<2.4.0,>=2.3.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from en_core_web_sm==2.3.1) (2.3.2)\n", "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (2.0.4)\n", "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (3.0.2)\n", "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (2.25.0)\n", "Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (0.8.0)\n", "Requirement already satisfied: numpy>=1.15.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (1.19.2)\n", "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (1.0.5)\n", "Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (1.0.5)\n", "Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (1.0.0)\n", "Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (4.54.1)\n", "Requirement already satisfied: plac<1.2.0,>=0.9.6 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (0.9.6)\n", "Requirement already satisfied: blis<0.5.0,>=0.4.0 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (0.4.1)\n", "Requirement already satisfied: setuptools in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (50.3.1.post20201107)\n", "Requirement already satisfied: thinc==7.4.1 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (7.4.1)\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (2020.12.5)\n", "Requirement already satisfied: chardet<4,>=3.0.2 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (3.0.4)\n", "Requirement already satisfied: idna<3,>=2.5 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (2.10)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<2.4.0,>=2.3.0->en_core_web_sm==2.3.1) (1.25.11)\n", "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", "You can now load the model via spacy.load('en_core_web_sm')\n", "\u001b[38;5;2m✔ Linking successful\u001b[0m\n", "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/en_core_web_sm -->\n", "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/spacy/data/en\n", "You can now load the model via spacy.load('en')\n" ] } ], "source": [ "!conda install torchtext -c pytorch -y\n", "!conda install spacy -y\n", "!python -m spacy download en" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/torchtext/data/field.py:150: UserWarning: Field class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.\n", " warnings.warn('{} class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.'.format(self.__class__.__name__), UserWarning)\n", "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/torchtext/data/field.py:150: UserWarning: LabelField class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.\n", " warnings.warn('{} class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.'.format(self.__class__.__name__), UserWarning)\n" ] } ], "source": [ "import torch\n", "from torchtext import data\n", "from torchtext import datasets\n", "\n", "SEED = 1234\n", "\n", "torch.manual_seed(SEED)\n", "torch.backends.cudnn.deterministic = True\n", "\n", "TEXT = data.Field(tokenize = 'spacy')\n", "LABEL = data.LabelField(dtype = torch.float)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/torchtext/data/example.py:78: UserWarning: Example class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.\n", " warnings.warn('Example class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.', UserWarning)\n" ] } ], "source": [ "import random\n", "\n", "train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)\n", "\n", "train_data, valid_data = train_data.split(random_state = random.seed(SEED))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of training examples: 17500\n", "Number of validation examples: 7500\n", "Number of testing examples: 25000\n" ] } ], "source": [ "print(f'Number of training examples: {len(train_data)}')\n", "print(f'Number of validation examples: {len(valid_data)}')\n", "print(f'Number of testing examples: {len(test_data)}')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'text': ['Why', 'do', 'people', 'who', 'do', 'not', 'know', 'what', 'a', 'particular', 'time', 'in', 'the', 'past', 'was', 'like', 'feel', 'the', 'need', 'to', 'try', 'to', 'define', 'that', 'time', 'for', 'others', '?', 'Replace', 'Woodstock', 'with', 'the', 'Civil', 'War', 'and', 'the', 'Apollo', 'moon', '-', 'landing', 'with', 'the', 'Titanic', 'sinking', 'and', 'you', \"'ve\", 'got', 'as', 'realistic', 'a', 'flick', 'as', 'this', 'formulaic', 'soap', 'opera', 'populated', 'entirely', 'by', 'low', '-', 'life', 'trash', '.', 'Is', 'this', 'what', 'kids', 'who', 'were', 'too', 'young', 'to', 'be', 'allowed', 'to', 'go', 'to', 'Woodstock', 'and', 'who', 'failed', 'grade', 'school', 'composition', 'do', '?', '\"', 'I', \"'ll\", 'show', 'those', 'old', 'meanies', ',', 'I', \"'ll\", 'put', 'out', 'my', 'own', 'movie', 'and', 'prove', 'that', 'you', 'do', \"n't\", 'have', 'to', 'know', 'nuttin', 'about', 'your', 'topic', 'to', 'still', 'make', 'money', '!', '\"', 'Yeah', ',', 'we', 'already', 'know', 'that', '.', 'The', 'one', 'thing', 'watching', 'this', 'film', 'did', 'for', 'me', 'was', 'to', 'give', 'me', 'a', 'little', 'insight', 'into', 'underclass', 'thinking', '.', 'The', 'next', 'time', 'I', 'see', 'a', 'slut', 'in', 'a', 'bar', 'who', 'looks', 'like', 'Diane', 'Lane', ',', 'I', \"'m\", 'running', 'the', 'other', 'way', '.', 'It', \"'s\", 'child', 'abuse', 'to', 'let', 'parents', 'that', 'worthless', 'raise', 'kids', '.', 'It', \"'s\", 'audience', 'abuse', 'to', 'simply', 'stick', 'Woodstock', 'and', 'the', 'moonlanding', 'into', 'a', 'flick', 'as', 'if', 'that', 'ipso', 'facto', 'means', 'the', 'film', 'portrays', '1969', '.'], 'label': 'neg'}\n" ] } ], "source": [ "print(vars(train_data.examples[0]))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": true }, "outputs": [], "source": [ "MAX_VOCAB_SIZE = 25_000\n", "\n", "TEXT.build_vocab(train_data, max_size = MAX_VOCAB_SIZE)\n", "\n", "LABEL.build_vocab(train_data)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Unique tokens in TEXT vocabulary: 25002\n", "Unique tokens in LABEL vocabulary: 2\n" ] } ], "source": [ "print(f\"Unique tokens in TEXT vocabulary: {len(TEXT.vocab)}\")\n", "print(f\"Unique tokens in LABEL vocabulary: {len(LABEL.vocab)}\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('the', 203172), (',', 192039), ('.', 165889), ('a', 109265), ('and', 109192), ('of', 100241), ('to', 93511), ('is', 76322), ('in', 61299), ('I', 54013), ('it', 53609), ('that', 48928), ('\"', 44101), (\"'s\", 43213), ('this', 42383), ('-', 36691), ('/>', '', 'the', ',', '.', 'a', 'and', 'of', 'to', 'is']\n" ] } ], "source": [ "print(TEXT.vocab.itos[:10])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "defaultdict(None, {'neg': 0, 'pos': 1})\n" ] } ], "source": [ "print(LABEL.vocab.stoi)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/torchtext/data/iterator.py:48: UserWarning: BucketIterator class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.\n", " warnings.warn('{} class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.'.format(self.__class__.__name__), UserWarning)\n" ] } ], "source": [ "BATCH_SIZE = 64\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(\n", " (train_data, valid_data, test_data), \n", " batch_size = BATCH_SIZE, \n", " device = device)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import torch.nn as nn\n", "import torch.nn.functional as F\n", "\n", "class FastText(nn.Module):\n", " def __init__(self, vocab_size, embedding_dim, output_dim, pad_idx):\n", " \n", " super().__init__()\n", " \n", " self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)\n", " \n", " self.fc = nn.Linear(embedding_dim, output_dim)\n", " \n", " def forward(self, text):\n", " \n", " #text = [sent len, batch size]\n", " \n", " embedded = self.embedding(text)\n", " \n", " #embedded = [sent len, batch size, emb dim]\n", " \n", " embedded = embedded.permute(1, 0, 2)\n", " \n", " #embedded = [batch size, sent len, emb dim]\n", " \n", " pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1) \n", " \n", " #pooled = [batch size, embedding_dim]\n", " \n", " return torch.sigmoid(self.fc(pooled))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "INPUT_DIM = len(TEXT.vocab)\n", "EMBEDDING_DIM = 100\n", "OUTPUT_DIM = 1\n", "PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]\n", "\n", "model = FastText(INPUT_DIM, EMBEDDING_DIM, OUTPUT_DIM, PAD_IDX)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The model has 2,500,301 trainable parameters\n" ] } ], "source": [ "def count_parameters(model):\n", " return sum(p.numel() for p in model.parameters() if p.requires_grad)\n", "\n", "print(f'The model has {count_parameters(model):,} trainable parameters')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]\n", "\n", "model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)\n", "model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import torch.optim as optim\n", "\n", "optimizer = optim.Adam(model.parameters())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "criterion = nn.BCELoss()\n", "\n", "model = model.to(device)\n", "criterion = criterion.to(device)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "def binary_accuracy(preds, y):\n", " \"\"\"\n", " Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8\n", " \"\"\"\n", "\n", " #round predictions to the closest integer\n", " rounded_preds = torch.round(preds)\n", " correct = (rounded_preds == y).float() #convert into float for division \n", " acc = correct.sum() / len(correct)\n", " return acc" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def train(model, iterator, optimizer, criterion):\n", " \n", " epoch_loss = 0\n", " epoch_acc = 0\n", " \n", " model.train()\n", " \n", " for batch in iterator:\n", " \n", " optimizer.zero_grad()\n", " \n", " predictions = model(batch.text).squeeze(1)\n", " \n", " loss = criterion(predictions, batch.label)\n", " \n", " acc = binary_accuracy(predictions, batch.label)\n", " \n", " loss.backward()\n", " \n", " optimizer.step()\n", " \n", " epoch_loss += loss.item()\n", " epoch_acc += acc.item()\n", " \n", " return epoch_loss / len(iterator), epoch_acc / len(iterator)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def evaluate(model, iterator, criterion):\n", " \n", " epoch_loss = 0\n", " epoch_acc = 0\n", " \n", " model.eval()\n", " \n", " with torch.no_grad():\n", " \n", " for batch in iterator:\n", "\n", " predictions = model(batch.text).squeeze(1)\n", " \n", " loss = criterion(predictions, batch.label)\n", " \n", " acc = binary_accuracy(predictions, batch.label)\n", "\n", " epoch_loss += loss.item()\n", " epoch_acc += acc.item()\n", " \n", " return epoch_loss / len(iterator), epoch_acc / len(iterator)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "import time\n", "\n", "def epoch_time(start_time, end_time):\n", " elapsed_time = end_time - start_time\n", " elapsed_mins = int(elapsed_time / 60)\n", " elapsed_secs = int(elapsed_time - (elapsed_mins * 60))\n", " return elapsed_mins, elapsed_secs" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/kuba/anaconda3/envs/tau/lib/python3.8/site-packages/torchtext/data/batch.py:23: UserWarning: Batch class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.\n", " warnings.warn('{} class will be retired soon and moved to torchtext.legacy. Please see the most recent release notes for further information.'.format(self.__class__.__name__), UserWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch: 01 | Epoch Time: 0m 40s\n", "\tTrain Loss: 0.686 | Train Acc: 59.60%\n", "\t Val. Loss: 0.630 | Val. Acc: 67.82%\n", "Epoch: 02 | Epoch Time: 0m 37s\n", "\tTrain Loss: 0.639 | Train Acc: 74.52%\n", "\t Val. Loss: 0.502 | Val. Acc: 75.98%\n" ] } ], "source": [ "N_EPOCHS = 3\n", "\n", "best_valid_loss = float('inf')\n", "\n", "for epoch in range(N_EPOCHS):\n", "\n", " start_time = time.time()\n", " \n", " train_loss, train_acc = train(model, train_iterator, optimizer, criterion)\n", " valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)\n", " \n", " end_time = time.time()\n", "\n", " epoch_mins, epoch_secs = epoch_time(start_time, end_time)\n", " \n", " if valid_loss < best_valid_loss:\n", " best_valid_loss = valid_loss\n", " torch.save(model.state_dict(), 'model.pt')\n", " \n", " print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')\n", " print(f'\\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')\n", " print(f'\\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.load_state_dict(torch.load('model.pt'))\n", "\n", "test_loss, test_acc = evaluate(model, test_iterator, criterion)\n", "\n", "print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# User Input" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import spacy\n", "nlp = spacy.load('en')\n", "\n", "def predict_sentiment(model, sentence):\n", " model.eval()\n", " tokenized = [tok.text for tok in nlp.tokenizer(sentence)]\n", " indexed = [TEXT.vocab.stoi[t] for t in tokenized]\n", " tensor = torch.LongTensor(indexed).to(device)\n", " tensor = tensor.unsqueeze(1)\n", " prediction = model(tensor)\n", " return prediction.item()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An example negative review..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predict_sentiment(model, \"This film is terrible\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An example positive review..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predict_sentiment(model, \"This film is great\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.0" } }, "nbformat": 4, "nbformat_minor": 2 }